Advanced Search+
Long CHEN (陈龙), Jinyuan LIU (刘金远), Ping DUAN (段萍), Guangrui LIU (刘广睿), Xingyu BIAN (边兴宇). Modeling of the influences of multiple modulated electron cyclotron current drive on NTMs in rotating plasma[J]. Plasma Science and Technology, 2017, 19(2): 24002-024002. DOI: 10.1088/2058-6272/19/2/024002
Citation: Long CHEN (陈龙), Jinyuan LIU (刘金远), Ping DUAN (段萍), Guangrui LIU (刘广睿), Xingyu BIAN (边兴宇). Modeling of the influences of multiple modulated electron cyclotron current drive on NTMs in rotating plasma[J]. Plasma Science and Technology, 2017, 19(2): 24002-024002. DOI: 10.1088/2058-6272/19/2/024002

Modeling of the influences of multiple modulated electron cyclotron current drive on NTMs in rotating plasma

Funds: This work is supported by National Natural Science Foundation of China (Grand Nos. 11605021, 11375039 and 11275034), Natural Science Foundation of Liaoning Province (Grand No. 201601074) and supported by ‘the Fundamental Research Funds for the Central Universities' (Grand Nos. 3132016128 and 3132014328).
More Information
  • Received Date: July 13, 2016
  • In this work, physical models of neoclassical tearing modes (NTMs) including bootstrap current and multiple modulated electron cyclotron current drive model are applied. Based on the specific physical problems during the suppression of NTMs by driven current, this work compares the efficiency of continuous and modulated driven currents, and simulates the physical processes of multiple modulated driven currents on suppressing rotating magnetic island. It is found that when island rotates along the poloidal direction, the suppression ability of continuous driven current can be massively reduced due to current deposition outside the island separatrix and reverse deposition direction at the X point, which can be avoided by current drive modulation. Multiple current drive has a better suppressing effect than single current drive. This work gives realistic numerical simulations by optimizing the model and parameters based on the experiments, which could provide references for successful suppression of NTMs in future advanced tokamak such as international thermonuclear experimental reactor.
  • [1]
    Günter S, Giruzzi G and Gude A 1999 Plasma Phys. Control. Fusion 41 231
    [2]
    Chang Z and Callen J D 1990 Nucl. Fusion 30 219
    [3]
    Zohm H et al 1990 Europhys. Lett. 11 745
    [4]
    Buttery R J et al 2000 Plasma Phys. Control. Fusion 42 113
    [5]
    La Haye R J et al 1997 Nucl. Fusion 37 397
    [6]
    Sauter O et al 1997 Phys. Plasmas 4 1654
    [7]
    Wei L and Wang Z X 2013 Phys. Plasmas 20 172
    [8]
    Wei L and Wang Z X 2011 Nucl. Fusion 51 123005
    [9]
    Wei L and Wang Z X 2014 Nucl. Fusion 54 043015
    [10]
    Hoshino K et al 1992 Phys. Rev. Lett. 69 2208
    [11]
    Kislov D A et al 1997 Nucl. Fusion 37 339
    [12]
    Westerhof E et al 2007 Nucl. Fusion 47 85
    [13]
    Yu Q and Günter S 1998 Plasma Phys. Control. Fusion 40 1977
    [14]
    Gantenbein G et al 2000 Phys. Rev. Lett. 85 1242
    [15]
    Wei L and Wang Z X 2014 Phys. Plasmas 2014 21 062505
    [16]
    WangZX,Wei LandYuF2015 Nucl. Fusion 55 43005
    [17]
    La Haye R J 2006 Phys. Plasmas 13 18
    [18]
    Maraschek M 2012 Nucl. Fusion 52 675
    [19]
    La Haye R J, Rice B W and Strait E J 2000 Nucl. Fusion 40 53
    [20]
    Sauter O et al 2002 Phys. Rev. Lett. 88 178
    [21]
    Maraschek M et al 2005 Nucl. Fusion 2005 45 1369
    [22]
    Yu Q, Günter S and Lackner K 2000 Phys. Rev. Lett. 85 2949
    [23]
    Welander A S et al 2002 Phys. Plasmas 9 2051
    [24]
    Reiman A H 1983 Phys. Fluids 26 1338
    [25]
    Morris A W 1992 Plasma Phys. Control. Fusion 34 1871
    [26]
    Hegna C C and Callen J D 1997 Phys. Plasmas 4 2940
    [27]
    Zohm H 1997 Phys. Plasmas 4 3433
    [28]
    Sozzi C et al 2012 EPJ Web Conf. 32 02017
    [29]
    Prater R et al 2003 Nucl. Fusion 43 1128
    [30]
    Felici F et al 2012 Nucl. Fusion 52 10
    [31]
    Prater R et al 2007 Nucl. Fusion 47 371
    [32]
    Westerhof E 1990 Nucl. Fusion 30 1143
    [33]
    Chatziantonaki I et al 2013 Plasma Phys. Control. Fusion 55 115012
    [34]
    Comisso L and Lazzaro E 2010 Nucl. Fusion 50 1247
    [35]
    Yu Q et al 2000 Phys. Plasmas 7 312
    [36]
    Tuda T, Kurita G I and Fujita T 2006 J. Korean Phys. Soc. 49 S83
    [37]
    Yang X, Wang S and Yang W 2012 Phys. Plasmas 19 072503
    [38]
    Wang Z X et al 2008 Phys. Plasmas 15 082109
    [39]
    Wang Z X et al 2007 Phys. Rev. Lett. 99 185004
    [40]
    Chen L et al 2015 Phys. Plasmas 22 052120
    [41]
    Chen L et al 2014 Phys. Plasmas 21 102106
    [42]
    Henderson M et al 2015 Phys. Plasmas 22 021808
    [43]
    Omori T et al 2011 Fusion Eng. Des. 86 951
    [44]
    Li J C et al 2016 Chin. Phys. B 25 045201
  • Related Articles

    [1]Jinjia GUO (郭金家), Al-Salihi MAHMOUD, Nan LI (李楠), Jiaojian SONG (宋矫健), Ronger ZHENG (郑荣儿). Study of pressure effects on ocean in-situ detection using laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2019, 21(3): 34022-034022. DOI: 10.1088/2058-6272/aaf091
    [2]Guilu ZHANG (张桂炉), Tianyuan HUANG (黄天源), Chenggang JIN (金成刚), Xuemei WU (吴雪梅), Lanjian ZHUGE (诸葛兰剑), Hantao JI (吉瀚涛). Development of a helicon-wave excited plasma facility with high magnetic field for plasma–wall interactions studies[J]. Plasma Science and Technology, 2018, 20(8): 85603-085603. DOI: 10.1088/2058-6272/aac014
    [3]Dan LUO (罗丹), Ying LIU (刘英), Xiangyu LI (李香宇), Zhenyang ZHAO (赵珍阳), Shigong WANG (王世功), Yong ZHANG (张勇). Quantitative analysis of C, Si, Mn, Ni, Cr and Cu in low-alloy steel under ambient conditions via laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2018, 20(7): 75504-075504. DOI: 10.1088/2058-6272/aabc5d
    [4]Bin CAO (曹斌), Jiangang LI (李建刚), Jianshen HU (胡建生), Houyin WANG (王厚银). The first results of deuterium retention on EAST with a full graphite wall via particle balance[J]. Plasma Science and Technology, 2017, 19(12): 125102. DOI: 10.1088/2058-6272/aa8a5f
    [5]ZHAO Dongye(赵栋烨), FARID Nazar(纳扎), HAI Ran(海然), WU Ding(吴鼎), DING Hongbin(丁洪斌). Diagnostics of First Wall Materials in a Magnetically Confined Fusion Device by Polarization-Resolved Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2014, 16(2): 149-154. DOI: 10.1088/1009-0630/16/2/11
    [6]Jongho SEON, Ensang LEE. Plasma Wall Potentials with Secondary Electron Emissions up to the Stable Space-Charge-Limited Condition[J]. Plasma Science and Technology, 2013, 15(11): 1093-1099. DOI: 10.1088/1009-0630/15/11/03
    [7]LIU Mingping (刘明萍), LIU Sanqiu (刘三秋), HE Jun (何俊), LIU Jie (刘杰). Electron Acceleration During the Mode Transition from Laser Wakefield to Plasma Wakefield Acceleration with a Dense-Plasma Wall[J]. Plasma Science and Technology, 2013, 15(9): 841-844. DOI: 10.1088/1009-0630/15/9/01
    [8]HONG Rongjie (洪荣杰), YANG Zhongshi (杨钟时), NIU Guojian (牛国鉴), LUO Guangnan (罗广南). A Molecular Dynamics Study on the Dust-Plasma/Wall Interactions in the EAST Tokamak[J]. Plasma Science and Technology, 2013, 15(4): 318-322. DOI: 10.1088/1009-0630/15/4/03
    [9]M. B. CHOWDHURI, R. MANCHANDA, J. GHOSH, S. B. BHATT, Ajai KUMAR, B. K. DAS, K. A. JADEJA, P. A. RAIJADA, Manoj KUMAR, S. BANERJEE, Nilam RAMAIYA, Aniruddh MALI, Ketan M. PATEL, Vinay KUMAR, et al. Improvement of Plasma Performance with Lithium Wall Conditioning in Aditya Tokamak[J]. Plasma Science and Technology, 2013, 15(2): 123-128. DOI: 10.1088/1009-0630/15/2/09
    [10]FANG Juan(方娟), HONG Yanji(洪延姬), LI Qian(李倩). Numerical Analysis of Interaction Between Single-Pulse Laser-Induced Plasma and Bow Shock in a Supersonic Flow[J]. Plasma Science and Technology, 2012, 14(8): 741-746. DOI: 10.1088/1009-0630/14/8/11

Catalog

    Article views (372) PDF downloads (789) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return