Advanced Search+
Arnab SARKAR, Manjeet SINGH. Laser-induced plasma electron number density: Stark broadening method versus the Saha–Boltzmann equation[J]. Plasma Science and Technology, 2017, 19(2): 25403-025403. DOI: 10.1088/2058-6272/19/2/025403
Citation: Arnab SARKAR, Manjeet SINGH. Laser-induced plasma electron number density: Stark broadening method versus the Saha–Boltzmann equation[J]. Plasma Science and Technology, 2017, 19(2): 25403-025403. DOI: 10.1088/2058-6272/19/2/025403

Laser-induced plasma electron number density: Stark broadening method versus the Saha–Boltzmann equation

More Information
  • Received Date: June 01, 2016
  • We report spectroscopic studies on plasma electron number density of laser-induced plasma produced by ns–Nd:YAG laser light pulses on an aluminum sample in air at atmospheric pressure. The effect of different laser energy and the effect of different laser wavelengths were compared. The experimentally observed line profiles of neutral aluminum have been used to extract the excitation temperature using the Boltzmann plot method, whereas the electron number density has been determined from the Stark broadened as well as using the Saha–Boltzmann equation (SBE). Each approach was also carried out by using the Al emission line and Mg emission lines. It was observed that the SBE method generated a little higher electron number density value than the Stark broadening method, but within the experimental uncertainty range. Comparisons of Ne determined by the two methods show the presence of a linear relation which is independent of laser energy or laser wavelength. These results show the applicability of the SBE method for Ne determination, especially when the system does not have any pure emission lines whose electron impact factor is known. Also use of Mg lines gives superior results than Al lines.
  • [1]
    Griem H R 1964 Plasma Spectroscopy (New York: McGraw-Hill)
    [2]
    Griem H R 1974 Spectral Line Broadening by Plasmas (New York: Academic)
    [3]
    Lochte-Holtgreven W 1968 Plasma Diagnostics (New York: Wiley)
    [4]
    Beke? G 1976 Principles of Laser Plasma (New York: Wiley)
    [5]
    Cremers D A and Radziemski L J 1987 Laser Spectroscopy and its Applications (New York: Dekker)
    [6]
    Adrain R S and Watson J 1984 J. Phys. D: Appl. Phys. 17 1915
    [7]
    Shaikh N M, Hafeez S and Baig M A 2007 Spectrochim. Acta B 62 1311
    [8]
    Satta M et al 2003 Appl. Spectrosc. 57 737
    [9]
    Sabsabi M and Cielo P 1995 Appl. Spectrosc. 49 499
    [10]
    Milán M and Laserna J J 2001 Spectrochim. Acta B 56 275
    [11]
    Keszler A M and Nemes L 2004 J. Mol. Struct. 695–696 211
    [12]
    Hermann J et al 1993 J. Appl. Phys. 74 3071
    [13]
    Harilal S S et al 1998 Appl. Spectrosc. 52 449
    [14]
    Cremers D A, Radziemski L J and Loree T R 1984 Appl. Spectrosc. 38 721
    [15]
    Bengoechea J, Aragón C and Aguilera J A 2005 Spectrochim. Acta B 60 897
    [16]
    Iida Y 1990 Spectrochim. Acta B 45 1353
    [17]
    Zhao X Z et al 1992 Appl. Phys. B 55 327
    [18]
    Corsi M et al 2005 Appl. Spectrosc. 59 853
    [19]
    De Giacomo A et al 2007 Spectrochim. Acta B 62 721
    [20]
    Grant K J and Paul G L 1990 Appl. Spectrosc. 44 1349
    [21]
    Sarkar A et al 2011 J. At. Mol. Opt. Phys. 2011 7
    [22]
    Andreic Z 1993 Spectroscopic investigations of aluminum plasma produced by a nitrogen laser PhD University of Zagreb, Zagreb, Croatia (http://rgn.hr/~zandreic/phdhtm/ phdindex.html)
    [23]
    Konjevi? N et al 2002 J. Phys. Chem. Ref. Data 31 819
    [24]
    OrtizMandMayoR2005 J. Phys. B: At. Mol. Opt. Phys. 38 3953
    [25]
    Singh M et al 2015 J. Anal. At. Spectrom. 30 2507
    [26]
    Chromiński K and Tkacz M 2010 J. Med. Inform. Technol. 16 6
    [27]
    Kurucz R L ‘Kurucz Atomic Database’ Kurucz Atomic Database: (http://cfa.harvard.edu/amdata/ampdata/ kurucz23/sekur.html)
    [28]
    NIST ‘NIST atomic spectral database’ NIST atomic spectral database: (http://physics.nist.gov/cgi-bin/ASD/lines_ form.html)
    [29]
    Burger M and Hermann J 2016 Spectrochim. Acta B 122 118
    [30]
    Adamson M et al 2007 Spectrochim. Acta B 62 1348
    [31]
    Pardini L et al 2013 Spectrochim. Acta B 88 98
    [32]
    Lasheras R J et al 2011 J. Hazardous Mater. 192 704
    [33]
    Le Drogoff B et al 2001 Spectrochim. Acta B 56 987
    [34]
    Colón C et al 1993 J. Appl. Phys. 73 4752
    [35]
    Ferrero F S et al 1997 J. Phys. B: At. Mol. Opt. Phys. 30 893
    [36]
    Galmed A H and Harith M A 2008 Appl. Phys. B 91 651
    [37]
    Weyl G M and Rosen D 1985 Phys. Rev. A 31 2300
    [38]
    Bogaerts A and Chen Z 2005 Spectrochim. Acta B 60 1280
  • Related Articles

    [1]Wenjia WANG (王文家), Deng ZHOU (周登), Yue MING (明玥). The residual zonal flow in tokamak plasmas with a poloidal electric field[J]. Plasma Science and Technology, 2019, 21(1): 15101-015101. DOI: 10.1088/2058-6272/aadd8e
    [2]Jerzy MIZERACZYK, Artur BERENDT. Introduction to investigations of the negative corona and EHD flow in gaseous two-phase fluids[J]. Plasma Science and Technology, 2018, 20(5): 54020-054020. DOI: 10.1088/2058-6272/aab602
    [3]Xiong YANG (杨雄), Mousen CHENG (程谋森), Dawei GUO (郭大伟), Moge WANG (王墨戈), Xiaokang LI (李小康). Characteristics of temporal evolution of particle density and electron temperature in helicon discharge[J]. Plasma Science and Technology, 2017, 19(10): 105402. DOI: 10.1088/2058-6272/aa808a
    [4]Jianxun LIU (刘建勋), Yanyun MA (马燕云), Xiaohu YANG (杨晓虎), Jun ZHAO (赵军), Tongpu YU (余同普), Fuqiu SHAO (邵福球), Hongbin ZHUO (卓红斌), Longfei GAN (甘龙飞), Guobo ZHANG (张国博), Yuan ZHAO (赵媛), Jingkang YANG (杨靖康). High-energy-density electron beam generation in ultra intense laser-plasma interaction[J]. Plasma Science and Technology, 2017, 19(1): 15001-015001. DOI: 10.1088/1009-0630/19/1/015001
    [5]DING Baogang (丁宝钢), CHEN Chao (陈超), WANG Wendi (王闻迪), WU Tongyu (吴彤宇), ZHOU Yan (周艳), YIN Zejie (阴泽杰). Research on the Real-Time Phase Jump Process Method for Plasma Electron Density Measurement in HL-2A Tokamak[J]. Plasma Science and Technology, 2015, 17(10): 837-841. DOI: 10.1088/1009-0630/17/10/05
    [6]Takashi MINAMI, Shohei ARAI, Naoki KENMOCH, Hiroaki YASHIRO, Chihiro TAKAHASHI, Shinji KOBAYASHI, Tohru MIZUUCHI, Shinsuke OHSHIMA, Satoshi YAMAMOTO, Hiroyuki OKADA, Kazunobu NAGASAKI, et al. Present Status of the Nd:YAG Thomson Scattering System Development for Time Evolution Measurement of Plasma Profile on Heliotron J[J]. Plasma Science and Technology, 2013, 15(3): 240-243. DOI: 10.1088/1009-0630/15/3/10
    [7]FENG Qichun(冯启春), WANG Qingshang(王清尚), LIU Jianli(刘剑利), REN Yanyu(任延宇), ZHANG Jingbo(张景波), HUO Lei(霍雷). The Evolution of Elliptic Flow under First Order Phase Transition[J]. Plasma Science and Technology, 2012, 14(7): 573-576. DOI: 10.1088/1009-0630/14/7/01
    [8]HU Zuquan, CHEN Yinhua, ZHENG Jugao, LIU Hao, YU Mingyang, WU Jian. Evolution of small scale density perturbations of plasma and charged aerosol particles in Polar Mesospheric Summer Echoes (PMSE) layers[J]. Plasma Science and Technology, 2011, 13(5): 550-556.
    [9]YE Wenting(叶文婷), WU Di(吴迪), PAN Xin(潘欣), CHEN Yashao(陈亚芍), HAN Yong(憨勇), SONG Zhongxiao(宋忠孝). Preparation of Chitosan Coatings Containing Calcium and Phosphorus on Titanium Surface by the Cathode Liquid Phase Plasma Technology[J]. Plasma Science and Technology, 2010, 12(5): 614-618.
    [10]WANG Qiuying (王秋颖), LI Sen(李森), GU Fan(顾璠). Mechanism of Phase Transition from Liquid to Gas under Dielectric Barrier Discharge Plasma[J]. Plasma Science and Technology, 2010, 12(5): 585-591.

Catalog

    Article views (359) PDF downloads (1223) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return