Advanced Search+
Ding LU (陆丁), Ziliang LI (李子良), Haibo SANG (桑海波), Baisong XIE (谢柏松). Delicate scale multipeak and flat-top structures of solitary waves in multi-component plasmas[J]. Plasma Science and Technology, 2017, 19(3): 35002-035002. DOI: 10.1088/2058-6272/19/3/035002
Citation: Ding LU (陆丁), Ziliang LI (李子良), Haibo SANG (桑海波), Baisong XIE (谢柏松). Delicate scale multipeak and flat-top structures of solitary waves in multi-component plasmas[J]. Plasma Science and Technology, 2017, 19(3): 35002-035002. DOI: 10.1088/2058-6272/19/3/035002

Delicate scale multipeak and flat-top structures of solitary waves in multi-component plasmas

Funds: This work was supported by National Natural Science Foundation of China under Grants No. 11475026 and No. 11305010.
More Information
  • Received Date: July 31, 2016
  • Numerically the delicate scale multipeak structures of the electrostatic solitary waves are found for the three-component (electron-positron-ion, i.e., EPI) plasmas. The complicated homoclinic phase portraits for this two-degree-of-freedom system are presented, which indicate that the system exhibits more abundant nonlinear phenomena. This finding is very useful to unveil the coherent dynamical behavior in laser-plasma interaction. It has an implication of electron?acceleration by a laser with soliton wave mechanism.
  • [1]
    Farina D and Bulanov S V 2001 Phys. Rev. E 64 066401
    [2]
    Verheest F and Cattaert T 2004 Phys. Plasma 11 3078
    [3]
    Shukla P K, Eliasson B and Sten?o L 2011 Phys. Rev. E 84 037401
    [4]
    Mahmood S and Saleem H 2003 Phys. Plasma 10 4680
    [5]
    Mahmood S and Ur-Rehman H 2009 Phys. Lett. A 373 2255
    [6]
    Berezhiani V I, El-Ashry M Y and Mo?z U A 1994 Phys. Rev. E 50 448
    [7]
    Berezhiani V I and Mahajan S M 1994 Phys. Rev. Lett. 73 1110
    [8]
    HuaCC,XieBSandHeK F2005Chaos Solitary waves Fractals 25 1161
    [9]
    Xie B S and Du S C 2006 Phys. Plasmas 13 074504
    [10]
    Xie B S, Li Z L, Lu D et al 2013 Phys. Plasmas 20 112109
    [11]
    Lu D, Li Z L and Xie B S 2013 Phys. Rev. E 88 033109
    [12]
    Lu D et al 2014 Phys. Plasmas 21 022108
    [13]
    Lu D, Li Z L and Xie B S 2015 J. Plasma Phys. 81 905810508
    [14]
    Chian A C-L and Kennel C F 1983 Astrophys. Space Sci. 97 9
    [15]
    Beskin V S, Gurevich A V and Istamin Y N 1993 Physics of the Pulsar Magnetosphere (Cambridge: Cambridge University Press)
    [16]
    Bjornsson G et al 1996 Astrophys. J. 467 99
    [17]
    Lesch H and Bisk G T 1998 Phys. Plasmas 5 2773
    [18]
    Shen B and Meyer-ter-Vehn J 2001 Phys. Rev. E 65 016405
    [19]
    Nerush E N et al 2011 Phys. Rev. Lett. 106 035001
    [20]
    Kaw P K, Sen A and Katsouleas T 1992 Phys. Rev. Lett. 68 3172
    [21]
    Eliasson B and Shukla P K 2006 Phys. Lett. A 354 453
    [22]
    Saxena V et al 2006 Phys. Plasmas 13 032309
    [23]
    Saxena V et al 2007 Phys. Plasmas 14 072307
    [24]
    Poornakala S et al 2002 Phys. Plasmas 9 1820
    [25]
    Mahajan S M, Shatashvili N L and Berezhiani V I 2009 Phys. Rev. E 80 066404
    [26]
    Berezhiani V I, Mahajan S M and Shatashvili N L 2010 J. Plasma Phys. 76 467
  • Related Articles

    [1]Monzurul K AHMED, Om P SAH. Solitary kinetic Alfvén waves in dense plasmas with relativistic degenerate electrons and positrons[J]. Plasma Science and Technology, 2019, 21(4): 45301-045301. DOI: 10.1088/2058-6272/aaf20f
    [2]Nimardeep KAUR, Kuldeep SINGH, Yashika GHAI, N S SAINI. Nonplanar dust acoustic solitary and rogue waves in an ion beam plasma with superthermal electrons and ions[J]. Plasma Science and Technology, 2018, 20(7): 74009-074009. DOI: 10.1088/2058-6272/aac37a
    [3]Suyun ZHOU (周素云), Hui CHEN (陈辉), Yanfang LI (李艳芳). Breaking of a Langmuir wave in cold electron–positron–ion plasmas[J]. Plasma Science and Technology, 2018, 20(1): 14008-014008. DOI: 10.1088/2058-6272/aa8cc0
    [4]Monzurul K AHMED, Om P SAH. Solitary kinetic Alfvén waves in a dense electron–positron–ion plasma with degenerate electrons and positrons[J]. Plasma Science and Technology, 2017, 19(12): 125302. DOI: 10.1088/2058-6272/aa8765
    [5]Guiliang SONG (宋桂良), Huishan CAI (蔡辉山). Linear tearing modes in an electron-positron plasma[J]. Plasma Science and Technology, 2017, 19(4): 45002-045002. DOI: 10.1088/2058-6272/aa5801
    [6]Jianxun LIU (刘建勋), Yanyun MA (马燕云), Xiaohu YANG (杨晓虎), Jun ZHAO (赵军), Tongpu YU (余同普), Fuqiu SHAO (邵福球), Hongbin ZHUO (卓红斌), Longfei GAN (甘龙飞), Guobo ZHANG (张国博), Yuan ZHAO (赵媛), Jingkang YANG (杨靖康). High-energy-density electron beam generation in ultra intense laser-plasma interaction[J]. Plasma Science and Technology, 2017, 19(1): 15001-015001. DOI: 10.1088/1009-0630/19/1/015001
    [7]REN Yanqiu (仁艳秋), LI Gun (李滚), DUAN Wenshan (段文山). Damping Solitary Wave in a Three-Dimensional Rectangular Geometry Plasma[J]. Plasma Science and Technology, 2016, 18(2): 108-113. DOI: 10.1088/1009-0630/18/2/02
    [8]ZHU Zhenni(朱珍妮), WU Zhengwei(吴征威), LI Chunhua(李春华), YANG Weihong(杨维纮). Electron Acoustic Solitary Waves in Magnetized Quantum Plasma with Relativistic Degenerated Electrons[J]. Plasma Science and Technology, 2014, 16(11): 995-999. DOI: 10.1088/1009-0630/16/11/01
    [9]ZHANG Liping(张丽萍), SU Junyan(苏俊燕), LI Yanlong(李延龙). Propagation of Nonlinear Solitary Waves in Nonuniform Dusty Plasmas with Two-Ion Temperature[J]. Plasma Science and Technology, 2014, 16(3): 177-181. DOI: 10.1088/1009-0630/16/3/01
    [10]MA Donglin (马栋林), ZHANG Xijun (张玺君), ZHANG Liping (张丽萍). The Effects of Inhomogeneity and Adiabatic Dusty Charge Fluctuation on Solitary Waves[J]. Plasma Science and Technology, 2013, 15(1): 7-11. DOI: 10.1088/1009-0630/15/1/02

Catalog

    Article views (269) PDF downloads (480) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return