Advanced Search+
N A ASHURBEKOV, K O IMINOV, O A POPOV, G S SHAKHSINOV. Current self-limitation in a transverse nanosecond discharge with a slotted cathode[J]. Plasma Science and Technology, 2017, 19(3): 35401-035401. DOI: 10.1088/2058-6272/19/3/035401
Citation: N A ASHURBEKOV, K O IMINOV, O A POPOV, G S SHAKHSINOV. Current self-limitation in a transverse nanosecond discharge with a slotted cathode[J]. Plasma Science and Technology, 2017, 19(3): 35401-035401. DOI: 10.1088/2058-6272/19/3/035401

Current self-limitation in a transverse nanosecond discharge with a slotted cathode

Funds: This work was financially supported by the project part of the state assignment of the Ministry of Education and Science of Russia in scientific activities, project 3.1262.2014K.
More Information
  • Received Date: June 29, 2016
  • A high-voltage transverse pulsed nanosecond discharge with a slotted hollow cathode was found to be a source of high-energy (few kV) ribbon electron beams. Conditions for the formation and extinction of electron beams were experimentally studied in discharges in helium at pressures of 1–100 Torr. It was found that interaction of fast electrons with a non-uniform electric field near the slotted cathode led to limitation of the magnitude of the discharge current. A physical model was developed to describe the discharge current self-limitation that was in satisfactory agreement with the experimental results. Some technical solutions that are expected to increase the upper current limits in transverse nanosecond discharge are discussed.
  • [1]
    Mesyats G A 2005 Pulsed Power (New York: Springer) (doi: 10.1007/b116932)
    [2]
    Tarasenko V F 2016 Generation of Runaway Electron Beams & X-Rays in High Pressure Gases: Techniques & Measurements (Nova Science)
    [3]
    Babich L P 2005 Phys. Usp. 48 1015
    [4]
    Levko D et al 2013 J. Appl. Phys. 113 196101
    [5]
    Babich L P, Bochkov E I and Kutsyk I M 2014 JETP Lett. 99 386
    [6]
    Tarasenko V F et al 2014 Tech. Phys. 59 494
    [7]
    Korolev Y D et al 2013 IEEE Trans. Plasma Sci. 41 2087
    [8]
    Ashurbekov N A et al 2015 Mod. Phys. Lett. B 29 1550102
    [9]
    Sharath N, Vigor Y and Igor A 2013 J. Phys. D: Appl. Phys. 46 155205
    [10]
    Golovin A I et al 2014 Tech. Phys. 59 670
    [11]
    Ashurbekov N A et al 2007 Tech. Phys. Lett. 33 517
    [12]
    Ashurbekov N A and Iminov K O 2015 Tech. Phys. 60 1456
    [13]
    Ashurbekov N A et al 2014 Tech. Phys. Lett. 40 665
    [14]
    Ashurbekov N A et al 2010 Tech. Phys. 55 1138
    [15]
    Vysikailo P I 2004 J. Exp. Theor. Phys. 98 936
  • Related Articles

    [1]Jinjia GUO (郭金家), Al-Salihi MAHMOUD, Nan LI (李楠), Jiaojian SONG (宋矫健), Ronger ZHENG (郑荣儿). Study of pressure effects on ocean in-situ detection using laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2019, 21(3): 34022-034022. DOI: 10.1088/2058-6272/aaf091
    [2]Guilu ZHANG (张桂炉), Tianyuan HUANG (黄天源), Chenggang JIN (金成刚), Xuemei WU (吴雪梅), Lanjian ZHUGE (诸葛兰剑), Hantao JI (吉瀚涛). Development of a helicon-wave excited plasma facility with high magnetic field for plasma–wall interactions studies[J]. Plasma Science and Technology, 2018, 20(8): 85603-085603. DOI: 10.1088/2058-6272/aac014
    [3]Dan LUO (罗丹), Ying LIU (刘英), Xiangyu LI (李香宇), Zhenyang ZHAO (赵珍阳), Shigong WANG (王世功), Yong ZHANG (张勇). Quantitative analysis of C, Si, Mn, Ni, Cr and Cu in low-alloy steel under ambient conditions via laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2018, 20(7): 75504-075504. DOI: 10.1088/2058-6272/aabc5d
    [4]Bin CAO (曹斌), Jiangang LI (李建刚), Jianshen HU (胡建生), Houyin WANG (王厚银). The first results of deuterium retention on EAST with a full graphite wall via particle balance[J]. Plasma Science and Technology, 2017, 19(12): 125102. DOI: 10.1088/2058-6272/aa8a5f
    [5]ZHAO Dongye(赵栋烨), FARID Nazar(纳扎), HAI Ran(海然), WU Ding(吴鼎), DING Hongbin(丁洪斌). Diagnostics of First Wall Materials in a Magnetically Confined Fusion Device by Polarization-Resolved Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2014, 16(2): 149-154. DOI: 10.1088/1009-0630/16/2/11
    [6]Jongho SEON, Ensang LEE. Plasma Wall Potentials with Secondary Electron Emissions up to the Stable Space-Charge-Limited Condition[J]. Plasma Science and Technology, 2013, 15(11): 1093-1099. DOI: 10.1088/1009-0630/15/11/03
    [7]LIU Mingping (刘明萍), LIU Sanqiu (刘三秋), HE Jun (何俊), LIU Jie (刘杰). Electron Acceleration During the Mode Transition from Laser Wakefield to Plasma Wakefield Acceleration with a Dense-Plasma Wall[J]. Plasma Science and Technology, 2013, 15(9): 841-844. DOI: 10.1088/1009-0630/15/9/01
    [8]HONG Rongjie (洪荣杰), YANG Zhongshi (杨钟时), NIU Guojian (牛国鉴), LUO Guangnan (罗广南). A Molecular Dynamics Study on the Dust-Plasma/Wall Interactions in the EAST Tokamak[J]. Plasma Science and Technology, 2013, 15(4): 318-322. DOI: 10.1088/1009-0630/15/4/03
    [9]M. B. CHOWDHURI, R. MANCHANDA, J. GHOSH, S. B. BHATT, Ajai KUMAR, B. K. DAS, K. A. JADEJA, P. A. RAIJADA, Manoj KUMAR, S. BANERJEE, Nilam RAMAIYA, Aniruddh MALI, Ketan M. PATEL, Vinay KUMAR, et al. Improvement of Plasma Performance with Lithium Wall Conditioning in Aditya Tokamak[J]. Plasma Science and Technology, 2013, 15(2): 123-128. DOI: 10.1088/1009-0630/15/2/09
    [10]FANG Juan(方娟), HONG Yanji(洪延姬), LI Qian(李倩). Numerical Analysis of Interaction Between Single-Pulse Laser-Induced Plasma and Bow Shock in a Supersonic Flow[J]. Plasma Science and Technology, 2012, 14(8): 741-746. DOI: 10.1088/1009-0630/14/8/11

Catalog

    Article views (253) PDF downloads (618) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return