Effect of pulse voltage rising time on discharge characteristics of a helium–air plasma at atmospheric pressure
-
Graphical Abstract
-
Abstract
In this paper, the influence of voltage rising time on a pulsed-dc helium–air plasma at atmospheric pressure is numerically simulated. Simulation results show that as the voltage rising time increases from 10 ns to 30 ns, there is a decrease in the discharge current, namely 0.052 A when the voltage rising time is 10 ns and 0.038 A when the voltage rising time is 30 ns. Additionally, a shorter voltage rising time results in a faster breakdown, a more rapidly rising current waveform, and a higher breakdown voltage. Furthermore, the basic parameters of the streamer discharge also increase with voltage rise rate, which is ascribed to the fact that more energetic electrons are produced in a shorter voltage rising time. Therefore, a pulsed-dc voltage with a short rising time is desirable for efficient production of nonequilibrium atmospheric pressure plasma discharge.
-
-