Advanced Search+
Muyang QIAN (钱沐杨), Gui LI (李桂), Sanqiu LIU (刘三秋), Yu ZHANG (张羽), Shan LI (李杉), Zebin LIN (林泽斌), Dezhen WANG (王德真). Effect of pulse voltage rising time on discharge characteristics of a helium–air plasma at atmospheric pressure[J]. Plasma Science and Technology, 2017, 19(6): 64015-064015. DOI: 10.1088/2058-6272/aa6154
Citation: Muyang QIAN (钱沐杨), Gui LI (李桂), Sanqiu LIU (刘三秋), Yu ZHANG (张羽), Shan LI (李杉), Zebin LIN (林泽斌), Dezhen WANG (王德真). Effect of pulse voltage rising time on discharge characteristics of a helium–air plasma at atmospheric pressure[J]. Plasma Science and Technology, 2017, 19(6): 64015-064015. DOI: 10.1088/2058-6272/aa6154

Effect of pulse voltage rising time on discharge characteristics of a helium–air plasma at atmospheric pressure

  • In this paper, the influence of voltage rising time on a pulsed-dc helium–air plasma at atmospheric pressure is numerically simulated. Simulation results show that as the voltage rising time increases from 10 ns to 30 ns, there is a decrease in the discharge current, namely 0.052 A when the voltage rising time is 10 ns and 0.038 A when the voltage rising time is 30 ns. Additionally, a shorter voltage rising time results in a faster breakdown, a more rapidly rising current waveform, and a higher breakdown voltage. Furthermore, the basic parameters of the streamer discharge also increase with voltage rise rate, which is ascribed to the fact that more energetic electrons are produced in a shorter voltage rising time. Therefore, a pulsed-dc voltage with a short rising time is desirable for efficient production of nonequilibrium atmospheric pressure plasma discharge.
  • loading

Catalog

    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return