Advanced Search+
Xingwei WU (吴兴伟), Cong LI (李聪), Chunlei FENG (冯春雷), Qi WANG (王奇), Hongbin DING (丁洪斌). Time-resolved measurements of NO2 concentration in pulsed discharges by high-sensitivity cavity ring-down spectroscopy[J]. Plasma Science and Technology, 2017, 19(5): 55506-055506. DOI: 10.1088/2058-6272/aa6473
Citation: Xingwei WU (吴兴伟), Cong LI (李聪), Chunlei FENG (冯春雷), Qi WANG (王奇), Hongbin DING (丁洪斌). Time-resolved measurements of NO2 concentration in pulsed discharges by high-sensitivity cavity ring-down spectroscopy[J]. Plasma Science and Technology, 2017, 19(5): 55506-055506. DOI: 10.1088/2058-6272/aa6473

Time-resolved measurements of NO2 concentration in pulsed discharges by high-sensitivity cavity ring-down spectroscopy

Funds: This work was supported by National Natural Science Foundation of China (Nos. 11175035, 11405022, 11475039, 11605023), the National Magnetic Confinement Fusion Science Program of China (No. 2013GB109005), Chinesisch-Deutsches Forschungsprojekt (No. GZ768), the Fundamental Research Funds for the Central Universities (Nos. DUT14ZD (G)04, DUT15RC(3)072, DUT15TD44, DUT16TD13), and China Postdoctoral Science Foundation (No. 2016M591423)
More Information
  • Received Date: July 04, 2016
  • To describe the complex kinetics of formation and destruction mechanism of nitrogen dioxide (NO2), there is an increasing demand for real-time and in situ analysis of NO2 in the discharge region. Pulsed cavity ring-down spectroscopy (CRDS) provides an excellent diagnostic approach. In the present paper, CRDS has been applied in situ for time evolution measurement of NO2 concentration which is rarely investigated in gas discharges. In pulsed direct current discharge of NO2/Ar mixture at a pressure of 500 Pa, a peak voltage of -1300V and a frequency of 30 Hz, for higher initial NO2 concentration (3.05×1014 cm-3, 8.88×1013 cm-3), the NO2 concentration sharply decreases at the beginning of the discharge afterglow and then becomes almost constant, and the pace of decline increases with pulse duration; however, for lower initial NO2 concentration of 1.69×1013 cm-3, the NO2 concentration also decreases at the beginning of the discharge afterglow for 200 ns and 1 μs pulse durations, while it slightly increases and then declines for 2 μs pulse duration. Thus, the removal of low-level NO2 could not be promoted by a higher mean energy input.
  • [1]
    Seinfeld J H and Pandis S N 2012 Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (New York: Wiley)
    [2]
    Osthoff H D et al 2006 J. Geophys. Res.: Atmos. 111 D12305
    [3]
    Lo A, Cessou A and Vervisch P 2014 J. Phys. D: Appl. Phys. 47 115202
    [4]
    Uddi M et al 2009 Proc. Combust. Inst. 32 929
    [5]
    Cartry G, Magne L and Cernogora G 1999 J. Phys. D: Appl. Phys. 32 1894
    [6]
    Pintassilgo C D et al 2010 Plasma Sources Sci. Technol. 19 055001
    [7]
    Ionikh Y et al 2006 Chem. Phys. 322 411
    [8]
    Pintassilgo C D, Guaitella O and Rousseau A 2009 Plasma Sources Sci. Technol. 18 025005
    [9]
    Zhang L et al 2014 Sci. World J. 2014 653576
    [10]
    Kossyi I A et al 1992 Plasma Sources Sci. Technol. 1 207
    [11]
    Lowke J J and Morrow R 1995 IEEE Trans. Plasma Sci. 23 661
    [12]
    Tochikubo F et al 2009 Jpn. J. Appl. Phys. 48 076507
    [13]
    Khacef A, Cormier J M and Pouvesle J M 2002 J. Phys. D: Appl. Phys. 35 1491
    [14]
    Hu X et al 2003 Fuel 82 1675
    [15]
    Yalin A P et al 2002 Appl. Phys. Lett. 81 1408
    [16]
    Stancu G D et al 2010 J. Phys. Chem. A 114 201
    [17]
    Wu X et al 2014 Plasma Sci. Technol. 16 142
    [18]
    Gordillo-Vázquez F J 2008 J. Phys. D: Appl. Phys. 41 234016
    [19]
    Uddi M et al 2009 J. Phys. D: Appl. Phys. 42 075205
    [20]
    Hagelaar G J M and Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722
    [21]
    Beckers F J C M et al 2013 J. Phys. D: Appl. Phys. 46 295201
  • Related Articles

    [1]Dandan ZOU, Chensheng TU, Chunmei CUI. Helical streamers guided by surface electromagnetic standing waves[J]. Plasma Science and Technology, 2023, 25(7): 072001. DOI: 10.1088/2058-6272/acb876
    [2]Ruilin CUI, Tianliang ZHANG, Qian YUAN, Feng HE, Ruoyu HAN, Jiting OUYANG. Comparison of heating mechanisms of argon helicon plasma in different wave modes with and without blue core[J]. Plasma Science and Technology, 2023, 25(1): 015403. DOI: 10.1088/2058-6272/ac8510
    [3]Huihui WANG (王慧慧), Zun ZHANG (张尊), Kaiyi YANG (杨凯翼), Chang TAN (谭畅), Ruilin CUI (崔瑞林), Jiting OUYANG (欧阳吉庭). Axial profiles of argon helicon plasma by optical emission spectroscope and Langmuir probe[J]. Plasma Science and Technology, 2019, 21(7): 74009-074009. DOI: 10.1088/2058-6272/ab175b
    [4]Jiali CHEN (陈佳丽), Peiyu JI (季佩宇), Chenggang JIN (金成刚), Lanjian ZHUGE (诸葛兰剑), Xuemei WU (吴雪梅). The properties of N-doped diamond-like carbon films prepared by helicon wave plasma chemical vapor deposition[J]. Plasma Science and Technology, 2019, 21(2): 25502-025502. DOI: 10.1088/2058-6272/aaee90
    [5]Xingquan WU (伍兴权), Guosheng XU (徐国盛), Baonian WAN (万宝年), Jens Juul RASMUSSEN, Volker NAULIN, Anders Henry NIELSEN, Liang CHEN (陈良), Ran CHEN (陈冉), Ning YAN (颜宁), Linming SHAO (邵林明). A new model of the L–H transition and H-mode power threshold[J]. Plasma Science and Technology, 2018, 20(9): 94003-094003. DOI: 10.1088/2058-6272/aabb9e
    [6]Guilu ZHANG (张桂炉), Tianyuan HUANG (黄天源), Chenggang JIN (金成刚), Xuemei WU (吴雪梅), Lanjian ZHUGE (诸葛兰剑), Hantao JI (吉瀚涛). Development of a helicon-wave excited plasma facility with high magnetic field for plasma–wall interactions studies[J]. Plasma Science and Technology, 2018, 20(8): 85603-085603. DOI: 10.1088/2058-6272/aac014
    [7]Peiyu JI (季佩宇), Jun YU (於俊), Tianyuan HUANG (黄天源), Chenggang JIN (金成刚), Yan YANG (杨燕), Lanjian ZHUGE (诸葛兰剑), Xuemei WU (吴雪梅). Mechanism of high growth rate for diamond-like carbon films synthesized by helicon wave plasma chemical vapor deposition[J]. Plasma Science and Technology, 2018, 20(2): 25505-025505. DOI: 10.1088/2058-6272/aa94bd
    [8]CHANG Lei (苌磊), LI Qingchong (李庆冲), ZHANG Huijie (张辉洁), LI Yinghong (李应红), WU Yun (吴云), ZHANG Bailing (张百灵), ZHUANG Zhong (庄重). Effect of Radial Density Configuration on Wave Field and Energy Flow in Axially Uniform Helicon Plasma[J]. Plasma Science and Technology, 2016, 18(8): 848-854. DOI: 10.1088/1009-0630/18/8/10
    [9]LIU Peng (刘鹏), XU Guosheng (徐国盛), WANG Huiqian (汪惠乾), JIANG Min (蒋敏), et al.. Reciprocating Probe Measurements of L-H Transition in LHCD H-Mode on EAST[J]. Plasma Science and Technology, 2013, 15(7): 619-622. DOI: 10.1088/1009-0630/15/7/03
    [10]ZHU Xueguang(朱学光). Influence of the Phase of the Antenna Current Standing Wave on the Power Flux in Ion Cyclotron Heating[J]. Plasma Science and Technology, 2010, 12(5): 543-546.

Catalog

    Article views (215) PDF downloads (713) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return