Advanced Search+
Lingjie LI (李灵杰), Zhiwei MA (马志为), Licheng WANG (王理程). Generation of Alfvén wave energy during magnetic reconnection in Hall MHD[J]. Plasma Science and Technology, 2017, 19(10): 105001. DOI: 10.1088/2058-6272/aa7c17
Citation: Lingjie LI (李灵杰), Zhiwei MA (马志为), Licheng WANG (王理程). Generation of Alfvén wave energy during magnetic reconnection in Hall MHD[J]. Plasma Science and Technology, 2017, 19(10): 105001. DOI: 10.1088/2058-6272/aa7c17

Generation of Alfvén wave energy during magnetic reconnection in Hall MHD

Funds: This work is supported by the Fundamental Research Fund for Chinese Central Universities, National Natural Science Founfidation of China under Grant No. 41474123, and the ITER-CN under Grant Nos. 2013GB104004 and 2013GB111004.
More Information
  • Received Date: May 07, 2017
  • The effect of the reconnection rate on the generation of Alfvén wave energy is systematically investigated using Hall magnetohydrodynamics (MHD). It is well known that a decrease in magnetic energy is proportional to the reconnection rate. It is found that an instantaneous increase in Alfvén wave energy in unit Alfvén time is the square dependence on the reconnection rate. The converted Alfvén wave energy is strongly enhanced due to the large increase in the reconnection rate in Hall MHD. For solar-terrestrial plasmas, the maximum converted Alfvén wave energy in unit Alfvén time with the Hall effect can be over 50 times higher than that without the Hall effect during magnetic reconnection.
  • [1]
    Ma Z W et al 2014 J. Geophys. Res. Space Physics 119 7495–7500
    [2]
    LeeL CandWuBH2000 Astrophys. J. 535 1014
    [3]
    Aschwanden M J 2001 Astrophys. J. 56 01035
    [4]
    Vaivads A, Retinò A and André M 2009 Plasma Phys. Control. Fusion 51 124016
    [5]
    Ma Z W et al 2012 Phys. Plasmas 19 032904
    [6]
    Bettarini L and lapenta G 2010 AIP Conf. Proc. 1216 60
    [7]
    Vekstein G E and Jain R 1998 Phys. Plasmas 5 1506
    [8]
    Birn J and Hesse M 2010 Phys. Plasmas 17 012109
    [9]
    Yamada M et al 2014 Nat. Commun. 5 4774
    [10]
    Ma Z W and Bhattacharjee A 1996 Geophys. Res. Lett. 23 1673
    [11]
    Huba J D and Rudakov L I 2004 Phys. Rev. Lett. 93 175003
    [12]
    Malyshkin L M 2008 Phys. Rev. Lett. 101 225001
    [13]
    Wang X, Bhattacharjee A and Ma Z W 2000 J. Geophys. Res. 105 27633
    [14]
    ?ieroset M et al 2002 Phys. Rev. Lett. 89 195001
    [15]
    Huba J D 2005 Phys. Plasmas 12 012322
    [16]
    Ren Y et al 2005 Phys. Rev. Lett. 95 055003
    [17]
    Brown M R, Cothran C D and Fung J 2006 Phys. Plasmas 13 056503
    [18]
    Xiao C J et al 2007 Geophys. Res. Lett. 34 L01101
    [19]
    Wang X, Bhattacharjee A and Ma Z W 2001 Phys. Rev. Lett. 87 265003
    [20]
    Wang X, Yang H A and Jin S P 2006 Phys. Plasmas 13 060702
    [21]
    Drake J F, Shay M A and Swisdak M 2008 Phys. Plasmas 15 042306
    [22]
    Le A et al 2010 Geophys. Res. Lett. 37 L03106
    [23]
    Bessho N and Bhattacharjee A 2005 Phys. Rev. Lett. 95 245001
    [24]
    Fujimoto K 2006 Phys. Plasmas 13 072904
    [25]
    Bhattacharjee A et al 2009 Phys. Plasmas 16 112102
    [26]
    Huang Y M and Bhattacharjee A 2010 Phys. Plasmas 17 062104
    [27]
    Parker E 1957 J. Geophys. Res. 62 509
    [28]
    Sweet P A 1958 The neutral point theory of solar ?ares Electromagnetic Phenomena in Cosmic Physics ed B Lehnert (New York: Cambridge University Press) pp 123–39
    [29]
    Ji H and Daughton W 2011 Phys. Plasmas 18 111207
    [30]
    Wang L C et al 2015 Phys. Lett. A 379 2068
    [31]
    Walen C 1944 Ark. Mat. Astron. Fys. 30A 15
    [32]
    Wang Y et al 2010 Phys. Rev. Lett. 105 195007
    [33]
    Zong Q G et al 2005 Geophys. Res. Lett. 32 L01101
    [34]
    Phan T D et al 2004 Ann. Geophys. 22 2355
    [35]
    Wu B H and Lee L C 2000 J. Geophys. Res. 105 18377
    [36]
    Sonnerup B U O et al 1981 J. Geophys. Res. 86 10049
    [37]
    Sonnerup B U O et al 1990 J. Geophys. Res. 95 10541
    [38]
    Ma Z W and Bhattacharjee A 2001 J. Geophys. Res. 106 3773
    [39]
    Zhang X et al 2011 Phys. Plasmas 18 092112
    [40]
    Ma Z W, Wang L C and Li L J 2015 Phys. Plasmas 22 062104
  • Related Articles

    [1]Zhongzheng LI (李中正), Juanfang HAN (韩娟芳), FangpingWANG (王芳平), Zhengwu CHEN (陈正武), Wenshan DUAN (段文山). Investigation of the fast magnetosonic wave excited by the Alfvén wave phase mixing by using the Hall–MHD model in inhomogeneous plasma[J]. Plasma Science and Technology, 2021, 23(3): 35003-035003. DOI: 10.1088/2058-6272/abe10b
    [2]Liang HAN (韩亮), Jun GAO (高俊), Tao CHEN (陈涛), Yuntian CONG (丛云天), Zongliang LI (李宗良). A method to measure the in situ magnetic field in a Hall thruster based on the Faraday rotation effect[J]. Plasma Science and Technology, 2019, 21(8): 85502-085502. DOI: 10.1088/2058-6272/ab0f63
    [3]Hong LI (李鸿), Xingyu LIU (刘星宇), Zhiyong GAO (高志勇), Yongjie DING (丁永杰), Liqiu WEI (魏立秋), Daren YU (于达仁), Xiaogang WANG (王晓钢). Particle-in-cell simulation for effect of anode temperature on discharge characteristics of a Hall effect thruster[J]. Plasma Science and Technology, 2018, 20(12): 125504. DOI: 10.1088/2058-6272/aaddf2
    [4]Liqiu WEI (魏立秋), Wenbo LI (李文博), Yongjie DING (丁永杰), Daren YU (于达仁). Effect of low-frequency oscillation on performance of Hall thrusters[J]. Plasma Science and Technology, 2018, 20(7): 75502-075502. DOI: 10.1088/2058-6272/aabae0
    [5]Yongjie DING (丁永杰), Hong LI (李鸿), Boyang JIA (贾伯阳), PengLI (李朋), Liqiu WEI (魏立秋), YuXU (徐宇), Wuji PENG (彭武吉), Hezhi SUN (孙鹤芝), Yong CAO (曹勇), Daren YU (于达仁). Simulation of the effect of a magnetically insulated anode on a low-power cylindrical Hall thruster[J]. Plasma Science and Technology, 2018, 20(3): 35509-035509. DOI: 10.1088/2058-6272/aa9fe7
    [6]CHANG Lei (苌磊), LI Qingchong (李庆冲), ZHANG Huijie (张辉洁), LI Yinghong (李应红), WU Yun (吴云), ZHANG Bailing (张百灵), ZHUANG Zhong (庄重). Effect of Radial Density Configuration on Wave Field and Energy Flow in Axially Uniform Helicon Plasma[J]. Plasma Science and Technology, 2016, 18(8): 848-854. DOI: 10.1088/1009-0630/18/8/10
    [7]DUAN Ping (段萍), BIAN Xingyu (边兴宇), CAO Anning (曹安宁), LIU Guangrui (刘广睿), CHEN Long (陈龙), YIN Yan (殷燕). Effect of Segmented Electrode Length on the Performances of an Aton-Type Hall Thruster[J]. Plasma Science and Technology, 2016, 18(5): 525-530. DOI: 10.1088/1009-0630/18/5/14
    [8]DUAN Ping (段萍), LIU Guangrui (刘广睿), BIAN Xingyu (边兴宇), CHEN Long (陈龙), YIN Yan (殷燕), CAO Anning (曹安宁). Effect of the Discharge Voltage on the Performance of the Hall Thruster[J]. Plasma Science and Technology, 2016, 18(4): 382-387. DOI: 10.1088/1009-0630/18/4/09
    [9]K. Ogawa, M. Isobe, K. Toi, F. Watanabe, D. A. Spong, A. Shimizu, M. Osakabe, D. S. Darrow, S. Ohdachi, S. Sakakibara, LHD Experiment Group. Magnetic Configuration Effects on Fast Ion Losses Induced by Fast Ion Driven Toroidal Alfvén Eigenmodes in the Large Helical Device[J]. Plasma Science and Technology, 2012, 14(4): 269-272. DOI: 10.1088/1009-0630/14/4/01
    [10]LIU Xun (刘勋), LI Yutong (李玉同), ZHONG Jiayong (仲佳勇), DONG Quanli (董全力), WANG Shoujun (王首钧), ZHANG Lei (张蕾), ZHU Jianqiang (朱健强), ZHAO Gang (赵刚), ZHANG Jie (张杰). Characteristics of Plasma Jets in Laser-Driven Magnetic Reconnection[J]. Plasma Science and Technology, 2012, 14(2): 97-101. DOI: 10.1088/1009-0630/14/2/03

Catalog

    Article views (324) PDF downloads (790) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return