Advanced Search+
Bowen LI (李博文), Zhibin WANG (王志斌), Qiuyue NIE (聂秋月), Xiaogang WANG (王晓钢), Fanrong KONG (孔繁荣), Zhenyu WANG (王振宇). Collision effects on propagation characteristics of electromagnetic waves in a sub-wavelength plasma slab of partially ionized dense plasmas[J]. Plasma Science and Technology, 2018, 20(1): 14015-014015. DOI: 10.1088/2058-6272/aa84ab
Citation: Bowen LI (李博文), Zhibin WANG (王志斌), Qiuyue NIE (聂秋月), Xiaogang WANG (王晓钢), Fanrong KONG (孔繁荣), Zhenyu WANG (王振宇). Collision effects on propagation characteristics of electromagnetic waves in a sub-wavelength plasma slab of partially ionized dense plasmas[J]. Plasma Science and Technology, 2018, 20(1): 14015-014015. DOI: 10.1088/2058-6272/aa84ab

Collision effects on propagation characteristics of electromagnetic waves in a sub-wavelength plasma slab of partially ionized dense plasmas

Funds: This work has been supported by National Natural Science Foundation of China (Nos. 41674165, 11405038) and the China Postdoctoral Science Foundation (No. 2015M570283).
More Information
  • Intensive collisions between electrons and neutral particles in partially ionized plasmas generated in atmospheric/sub-atmospheric pressure environments can sufficiently affect the propagation characteristics of electromagnetic waves, particularly in the sub-wavelength regime. To investigate the collisional effect in such plasmas, we introduce a simplified plasma slab model with a thickness on the order of the wavelength of the incident electromagnetic wave. The scattering matrix method (SMM) is applied to solve the wave equation in the plasma slab with significant nonuniformity. Results show that the collisions between the electrons and the neutral particles, as well as the incident angle and the plasma thickness, can disturb the transmission and reduce reflection significantly.
  • Related Articles

    [1]Jiahui ZHANG (张珈珲), Xin JI (吉欣), Keyuan YANG (杨克元), Lei SHI (石磊), Qingxia WANG (王青霞). Energy dissipation and power deposition of electromagnetic waves in the plasma sheath[J]. Plasma Science and Technology, 2021, 23(1): 15404-015404. DOI: 10.1088/2058-6272/abc946
    [2]Jianyi CHEN (陈建义), Chengxun YUAN (袁承勋), Xiudong SUN (孙秀冬), Lei HUO (霍雷). Transmissivity of electromagnetic wave propagating in magnetized plasma sheath using variational method[J]. Plasma Science and Technology, 2019, 21(12): 125001. DOI: 10.1088/2058-6272/ab4199
    [3]Xuyang CHEN (陈旭阳), Fangfang SHEN (沈方芳), Yanming LIU (刘彦明), Wei AI (艾炜), Xiaoping LI (李小平). Study of plasma-based stable and ultra-wideband electromagnetic wave absorption for stealth application[J]. Plasma Science and Technology, 2018, 20(6): 65503-065503. DOI: 10.1088/2058-6272/aaaa18
    [4]LI Yonggao (李永高), ZHOU Yan (周艳), YUAN Baoshan (袁保山), DENG Zhongchao (邓中朝), ZHANG Boyu (张博宇), LI Yuan (李远), DENG Wei (邓玮), WANG Haoxi (王浩西), YI Jiang (易江), HL-A Team. Application of the Magnetic Surface Based PARK-Matrix Method in the HCOOH Laser Interferometry System on HL-2A[J]. Plasma Science and Technology, 2016, 18(12): 1198-1203. DOI: 10.1088/1009-0630/18/12/10
    [5]LIU Zhiwei (刘智惟), BAO Weimin (包为民), LI Xiaoping (李小平), SHI Lei (石磊), LIU Donglin (刘东林). Influences of Turbulent Reentry Plasma Sheath on Wave Scattering and Propagation[J]. Plasma Science and Technology, 2016, 18(6): 617-626. DOI: 10.1088/1009-0630/18/6/07
    [6]S. PRASAD, Vivek SINGH, A. K. SINGH. Properties of Ternary One Dimensional Plasma Photomic Crystals for an Obliquely Incident Electromagnetic Wave Considering the E®ect of Collisions in Plasma Layers[J]. Plasma Science and Technology, 2012, 14(12): 1084-1090. DOI: 10.1088/1009-0630/14/12/09
    [7]LI Chunzao(李春早), LIU Shaobin(刘少斌), BIAN Borui(卞博锐), DAI Zhaoyang(戴钊阳), ZHANG Xueyong(张学勇). Theoretical Analysis on Propagation of Electromagnetic Wave in Preformed Narrow Plasma Channel[J]. Plasma Science and Technology, 2012, 14(8): 702-707. DOI: 10.1088/1009-0630/14/8/04
    [8]WANG Shuo(王硕), T. SUDA, M. WAKASUGI, T. TAMAE, K. KURITA, A. NODA, T. SHIRAI, H. TONGU, Y. YANO. Progress in the R&D Experiments About a Novel Method of Electron Scattering off Short-lived Nuclei[J]. Plasma Science and Technology, 2012, 14(5): 419-420. DOI: 10.1088/1009-0630/14/5/19
    [9]XI Yanbin (奚衍斌), LIU Yue (刘悦). FDTD Simulation on Power Absorption of Terahertz Electromagnetic Waves in Dense Plasma[J]. Plasma Science and Technology, 2012, 14(1): 5-8. DOI: 10.1088/1009-0630/14/1/02
    [10]ZHANG Zhitao, ZHAO Jiansen, XU Xiaowen, YIN Yan. Experimental Study on the Interaction of Electromagnetic Waves and Glow Plasma[J]. Plasma Science and Technology, 2011, 13(3): 279-285.

Catalog

    Article views (318) PDF downloads (471) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return