Advanced Search+
Xin SONG (宋鑫), Qing WANG (王庆), Zeng LIN (蔺增), Puhui ZHANG (张谱辉), Shuhao WANG (王书豪). Control of vacuum arc source cathode spots contraction motion by changing electromagnetic field[J]. Plasma Science and Technology, 2018, 20(2): 25402-025402. DOI: 10.1088/2058-6272/aa8a30
Citation: Xin SONG (宋鑫), Qing WANG (王庆), Zeng LIN (蔺增), Puhui ZHANG (张谱辉), Shuhao WANG (王书豪). Control of vacuum arc source cathode spots contraction motion by changing electromagnetic field[J]. Plasma Science and Technology, 2018, 20(2): 25402-025402. DOI: 10.1088/2058-6272/aa8a30

Control of vacuum arc source cathode spots contraction motion by changing electromagnetic field

More Information
  • Received Date: May 25, 2017
  • This paper investigates the magnetic field component impact on cathode spots motion trajectory and the mechanism of periodic contraction. Electromagnetic coils and permanent magnets were installed at the different sides of cathode surface, the photographs of cathode spots motion trajectory were captured by a camera. Increasing the number of magnets and decreasing the distance between magnets and cathode both lead to enhancing cathode spots motion velocity. Radii of cathode spots trajectory decrease gradually with the increasing of electromagnetic coil’s current, from 40 mm at 0 A to 10 mm at 2.7 A. Parallel magnetic field component intensity influence the speed of cathode spots rotate motion, and perpendicular magnetic field component drives spots drift in the radial direction. Cathode spot’s radial drift is controlled by changing the location of the ‘zero line’ where perpendicular magnetic component shifts direction and the radius of cathode spots trajectory almost equal to ‘zero line’.
  • [1]
    Keidar M et al 1996 Surf. Coat. Technol. 86-87 415
    [2]
    Huang M D et al 2003 Surf. Coat. Technol. 176 109
    [3]
    Ellrodt M and Kühn M 1996 Contrib. Plasma Phys. 36 687
    [4]
    Beilis I I 2016 Phys. Plasmas 23 093501
    [5]
    Rakhovskii V I 1976 IEEE Trans. Plasma Sci. 4 81
    [6]
    Li L H et al 2013 Vacuum 91 20
    [7]
    Boxman R L et al 1996 Surf. Coat. Technol. 86-87 243
    [8]
    Wang G F et al 2000 Surf. Coat. Technol. 128-129 470
    [9]
    Ryabchikov A I et al 2016 Surf. Coat. Technol. 306 251
    [10]
    Sivin D O et al 2014 Appl. Surf. Sci. 310 120
    [11]
    Takikawa H et al 2000 Thin Solid Films 377-378 74
    [12]
    Fei C et al 2011 Appl. Surf. Sci. 258 1819
    [13]
    Naddaf M et al 2016 Nucl. Instrum. Methods Phys. Res. B 381 90
    [14]
    Lang W C et al 2010 Vacuum 84 1111
    [15]
    Coll B F and Sanders D M 1996 Surf. Coat. Technol. 81 42
    [16]
    Stepanov I B et al 2016 Surf. Coat. Technol. 306 21
    [17]
    Jüttner B and Kleberg I 2000 J. Phys. D: Appl. Phys. 33 2025
    [18]
    Jüttner B 2001 J. Phys. D: Appl. Phys. 34 R103
    [19]
    Swift P D 1996 J. Phys. D: Appl. Phys. 29 2025
  • Related Articles

    [1]Yan WANG (王艳), Zhimin LIU (刘智民), Lizhen LIANG (梁立振), Chundong HU (胡纯栋). Preliminary results of optical emission spectroscopy by line ratio method in the RF negative ion source at ASIPP[J]. Plasma Science and Technology, 2019, 21(4): 45601-045601. DOI: 10.1088/2058-6272/aaf592
    [2]Jun WU (吴军), Jian WU (吴健), M T RIETVELD, I HAGGSTROM, Haisheng ZHAO (赵海生), Tong XU (徐彤), Zhengwen XU (许正文). Systematic variation in observing altitude of enhanced ion line by the pump near fifth gyroharmonic[J]. Plasma Science and Technology, 2018, 20(12): 125301. DOI: 10.1088/2058-6272/aadd44
    [3]Xianhai PANG (庞先海), Ting WANG (王婷), Shixin XIU (修士新), Junfei YANG (杨俊飞), Hao JING (景皓). Investigation of cathode spot characteristics in vacuum under transverse magnetic field (TMF) contacts[J]. Plasma Science and Technology, 2018, 20(8): 85502-085502. DOI: 10.1088/2058-6272/aab782
    [4]Xuebao LI (李学宝), Dayong LI (李大勇), Qian ZHANG (张迁), Yinfei LI (李隐飞), Xiang CUI (崔翔), Tiebing LU (卢铁兵). The detailed characteristics of positive corona current pulses in the line-to-plane electrodes[J]. Plasma Science and Technology, 2018, 20(5): 54014-054014. DOI: 10.1088/2058-6272/aaa66b
    [5]HU Yixiang(呼义翔), ZENG Jiangtao(曾江涛), SUN Fengju(孙凤举), WEI Hao(魏浩), YIN Jiahui(尹佳辉), CONG Peitian(丛培天), QIU Aici(邱爱慈). Modeling Methods for the Main Switch of High Pulsed-Power Facilities Based on Transmission Line Code[J]. Plasma Science and Technology, 2014, 16(9): 873-876. DOI: 10.1088/1009-0630/16/9/12
    [6]WU Hanyu(吴撼宇), ZENG Zhengzhong(曾正中), WANG Liangping(王亮平), GUO Ning(郭宁). Experimental Study of Current Loss of Stainless Steel Magnetically Insulated Transmission Line with Current Density at MA/cm Level[J]. Plasma Science and Technology, 2014, 16(6): 625-628. DOI: 10.1088/1009-0630/16/6/16
    [7]ZHU Liying(朱立颖), WU Jianwen(武建文), JIANG Yuan(蒋原). Motion and Splitting of Vacuum Arc Column in Transverse Magnetic Field Contacts at Intermediate-Frequency[J]. Plasma Science and Technology, 2014, 16(5): 454-459. DOI: 10.1088/1009-0630/16/5/03
    [8]DUAN Ping(段萍), ZHOU Xinwei(周新维), LIU Yuan(刘媛), CAO Anning(曹安宁), QIN Haijuan(覃海娟), CHEN Long(陈龙), YIN Yan(殷燕). Effects of Magnetic Field and Ion Velocity on SPT Plasma Sheath Characteristics[J]. Plasma Science and Technology, 2014, 16(2): 161-167. DOI: 10.1088/1009-0630/16/2/13
    [9]LI Hui (李辉), XIE Mingfeng (谢铭丰). Plasma Parameters of a Gliding Arc Jet at Atmospheric Pressure Obtained by a Line-Ratio Method[J]. Plasma Science and Technology, 2013, 15(8): 776-779. DOI: 10.1088/1009-0630/15/8/11
    [10]GUO Jun(郭俊). The Effects of Relative Drift Velocities Between Proton and He2+ on the Magnetic Spectral Signatures in the Plasma Depletion Layer[J]. Plasma Science and Technology, 2011, 13(5): 557-560.

Catalog

    Article views (238) PDF downloads (859) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return