Advanced Search+
Bicheng LI (李必成), Zhonghe JIANG (江中和), Jian LV (吕健), Xiang LI (李想), Bo RAO (饶波), Yonghua DING (丁永华). Numerical simulation of plasma response to externally applied resonant magnetic perturbation on the J-TEXT tokamak[J]. Plasma Science and Technology, 2018, 20(5): 54004-054004. DOI: 10.1088/2058-6272/aa97cf
Citation: Bicheng LI (李必成), Zhonghe JIANG (江中和), Jian LV (吕健), Xiang LI (李想), Bo RAO (饶波), Yonghua DING (丁永华). Numerical simulation of plasma response to externally applied resonant magnetic perturbation on the J-TEXT tokamak[J]. Plasma Science and Technology, 2018, 20(5): 54004-054004. DOI: 10.1088/2058-6272/aa97cf

Numerical simulation of plasma response to externally applied resonant magnetic perturbation on the J-TEXT tokamak

Funds: This work was supported by the National Magnetic Confinement Fusion Science Programs (No. 2015GB104004 and No. 2015GB111002). This work was also partially supported by National Natural Science Foundation of China (No. 11575068). We thank Dr Izzo very much for her kind help with NIMROD.
More Information
  • Received Date: August 28, 2017
  • Nonlinear magnetohydrodynamic (MHD) simulations of an equilibrium on the J-TEXT tokamak with applied resonant magnetic perturbations (RMPs) are performed with NIMROD (non-ideal MHD with rotation, open discussion). Numerical simulation of plasma response to RMPs has been developed to investigate magnetic topology, plasma density and rotation profile. The results indicate that the pure applied RMPs can stimulate 2/1 mode as well as 3/1 mode by the toroidal mode coupling, and finally change density profile by particle transport. At the same time, plasma rotation plays an important role during the entire evolution process.
  • [1]
    Liang Y et al 2007 Phys. Rev. Lett. 98 265004
    [2]
    Evans T E et al 2006 Phys. Plasmas 13 056121
    [3]
    Evans T E et al 2005 J. Nucl. Mater. 337–339 691
    [4]
    Evans T E 2013 J. Nucl. Mater. 438 S11
    [5]
    Burrell K H et al 2005 Plasma Phys. Control. Fusion 47 B37
    [6]
    Finken K H et al 2007 Phys. Rev. Lett. 98 065001
    [7]
    Hu Q et al 2014 Nucl. Fusion 54 064013
    [8]
    Schmitz O et al 2012 Nucl. Fusion 52 043005
    [9]
    Rozhansky V et al 2010 Nucl. Fusion 50 034005
    [10]
    Schmitz O et al 2009 J. Nucl. Mater. 390–391 330
    [11]
    Hu Q 2014 Mechanism research of in?uences of external resonant magnetic perturbations on tearing mode and particle transport PhD Thesis Huazhong University of Science and Technology (in Chinese)
    [12]
    Sovinec C R et al 2004 J. Comput. Phys. 195 355
    [13]
    Beidler M T et al 2017 Phys. Plasmas 24 052508
    [14]
    Izzo V A et al 2008 Phys. Plasmas 15 056109
    [15]
    Gao H et al 2016 Plasma Sci. Technol. 18 1225
    [16]
    Zhang F et al 2016 Plasma Sci. Technol. 18 786
    [17]
    Zhuang G et al 2015 Nucl. Fusion 55 104003
    [18]
    Rao B et al 2014 Fusion Eng. Des. 89 378
  • Related Articles

    [1]Haowei ZHANG, Zhiwei MA. Validation of the current and pressure coupling schemes with nonlinear simulations of TAE and analysis on the linear stability of tearing mode in the presence of energetic particles[J]. Plasma Science and Technology, 2023, 25(4): 045105. DOI: 10.1088/2058-6272/aca6c0
    [2]Renchuan HE, Xiaoyi YANG, Chijie XIAO, Xiaogang WANG, Tianchao XU, Zhibin GUO, Yue GE, Xiuming YU, Zuyu ZHANG, Rui KE, Ruixin YUAN. Experimental observation of the transport induced by ion Bernstein waves near the separatrix of magnetic nulls[J]. Plasma Science and Technology, 2022, 24(11): 115001. DOI: 10.1088/2058-6272/ac770b
    [3]Zhenghao REN (任政豪), Jinyuan LIU (刘金远), Feng WANG (王丰), Huishan CAI (蔡辉山), Zhengxiong WANG (王正汹), Wei SHEN (申伟). Influence of toroidal rotation on the tearing mode in tokamak plasmas[J]. Plasma Science and Technology, 2020, 22(6): 65102-065102. DOI: 10.1088/2058-6272/ab77d4
    [4]Jie HUANG (黄杰), Yasuhiro SUZUKI (铃木康浩), Yunfeng LIANG (梁云峰), Manni JIA (贾曼妮), Youwen SUN (孙有文), Nan CHU (楚南), Jichan XU (许吉禅), Muquan WU (吴木泉), EAST team. Magnetic field topology modeling under resonant magnetic perturbations on EAST[J]. Plasma Science and Technology, 2019, 21(6): 65105-065105. DOI: 10.1088/2058-6272/ab0d35
    [5]Weikang TANG (汤炜康), Lai WEI (魏来), Zhengxiong WANG (王正汹), Jialei WANG (王佳磊), Tong LIU (刘桐), Shu ZHENG (郑殊). Effects of resonant magnetic perturbation on locked mode of neoclassical tearing modes[J]. Plasma Science and Technology, 2019, 21(6): 65103-065103. DOI: 10.1088/2058-6272/ab0a18
    [6]Ding LI (李定), Wen YANG (杨文), Huishan CAI (蔡辉山). On theoretical research for nonlinear tearing mode[J]. Plasma Science and Technology, 2018, 20(9): 94002-094002. DOI: 10.1088/2058-6272/aabde4
    [7]Guo XU (徐国), Bo RAO (饶波), Yonghua DING (丁永华), Mao LI (李茂), Da LI (李达), Ruo JIA (贾若), Minxiong YAN (严民雄), Xinke JI (吉新科), Nengchao WANG (王能超), Zhuo HUANG (黄卓), Daojing GUO (郭道靖), Lai PENG (彭莱). Power supply for generating frequency-variable resonant magnetic perturbations on the J-TEXT tokamak[J]. Plasma Science and Technology, 2018, 20(8): 85601-085601. DOI: 10.1088/2058-6272/aabd2f
    [8]LIN Zhihong (林志宏), S. ETHIER, T. S. HAHM, W. M. TANG. Verification of Gyrokinetic Particle Simulation of Device Size Scaling of Turbulent Transport[J]. Plasma Science and Technology, 2012, 14(12): 1125-1126. DOI: 10.1088/1009-0630/14/12/17
    [9]LI Chengyue (李承跃). Numerical Simulation of the Neutralized α Particle Transport near the Divertor Plate Region[J]. Plasma Science and Technology, 2012, 14(10): 886-890. DOI: 10.1088/1009-0630/14/10/06
    [10]HAO Changduana(郝长端), ZHANG Minga(张明), DING Yonghua(丁永华), RAO Boa(饶波), CEN Yishuna(岑义顺), ZHUANG Ge(庄革). Stress and Thermal Analysis of the In-Vessel Resonant Magnetic Perturbation Coils on the J-TEXT Tokamak[J]. Plasma Science and Technology, 2012, 14(1): 83-88. DOI: 10.1088/1009-0630/14/1/18

Catalog

    Article views (245) PDF downloads (498) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return