Advanced Search+
Qinwen XUE (薛钦文), Xiaohua WANG (王晓华), Chenglin LIU (刘成林), Youwen LIU (刘友文). Pressure-controlled terahertz filter based on 1D photonic crystal with a defective semiconductor[J]. Plasma Science and Technology, 2018, 20(3): 35504-035504. DOI: 10.1088/2058-6272/aa98d8
Citation: Qinwen XUE (薛钦文), Xiaohua WANG (王晓华), Chenglin LIU (刘成林), Youwen LIU (刘友文). Pressure-controlled terahertz filter based on 1D photonic crystal with a defective semiconductor[J]. Plasma Science and Technology, 2018, 20(3): 35504-035504. DOI: 10.1088/2058-6272/aa98d8

Pressure-controlled terahertz filter based on 1D photonic crystal with a defective semiconductor

Funds: This work was partially supported by National Natural Science Foundation of China (Grant Nos. 11174147, 11175152 and 11704326), the Funding of Jiangsu Innovation Program for Graduate Education (Grant No. KYLX15_0316) and the Fundamental Research Funds for the Central Universities.
More Information
  • Received Date: July 24, 2017
  • The tunable terahertz (THz) filter has been designed and studied, which is composed of 1D photonic crystal (PC) containing a defect layer of semiconductor GaAs. The analytical solution of 1D defective PC (1DDPC) is deduced based on the transfer matrix method, and the electromagnetic plane wave numerical simulation of this 1DDPC is performed by using the finite element method. The calculated and simulated results have confirmed that the filtering transmittance of this 1DDPC in symmetric structure of air/(Si/SiO2)N/GaAs/(SiO2/Si)N/air is far higher than in asymmetric structure of air/(Si/SiO2)N/GaAs/(Si/SiO2)N/air, where the filtering frequency can be tuned by the external pressure. It can provide a feasible route to design the external pressure-controlled THz filter based on 1DPC with a defective semiconductor.
  • [1]
    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059
    [2]
    John S 1987 Phys. Rev. Lett. 58 2486
    [3]
    Pipa V I, Liptuga A I and Morozhenko V 2013 J. Optics 15 075104
    [4]
    Maigyte L and Staliunas K 2015 Appl. Phys. Rev. 2 011102
    [5]
    Hojo H and Mase A 2004 J. Plasma Fusion Res. 80 89
    [6]
    Guo B, Peng L and Qiu X M 2013 Plasma Sci. Technol. 15 609
    [7]
    Zhang H F et al 2012 Phys. Plasmas 19 112102
    [8]
    Zhang H F et al 2013 J. Supercond. Nov. Magn. 26 77
    [9]
    Ding G W et al 2015 Physica B 468–469 1
    [10]
    Kong X K et al 2017 Opt. Commun. 383 391
    [11]
    Jamshidi-Ghaleh K and Moslemi F 2017 Appl. Opt. 56 4146
    [12]
    Abouti O E et al 2016 Phys. Plasmas 23 082115
    [13]
    Zhang H F, Liu S B and Yang H 2014 J. Supercond. Nov. Magn. 27 41
    [14]
    Zhang H F et al 2013 J. Supercond. Nov. Magn. 26 3391
    [15]
    HungH C, Wu CJ and Chang S J 2011 J. Appl. Phys. 110 093110
    [16]
    Yang J et al 2016 Sci. Rep. 6 38732
    [17]
    Chang T W, Chien J R and Wu C J 2016 Appl. Opt. 55 943
    [18]
    Feng Y C et al 2017 Plasmonics (https://doi.org/10.1007/ s11468-017-0557-6)
    [19]
    LiPNandLiuY W2009 Phys. Lett. A 373 1870
    [20]
    Wilson K S J and Navaneethakrishnan K 2005 Phys. Stat. Sol. 242 2515
    [21]
    Wang H and Li Y P 2001 Acta Phys. Sin. 50 2172 (in Chinese)
  • Related Articles

    [1]Reza SAFARI, Farshad SOHBATZADEH. Effect of methane content and the oscillating electric field between electrodes on atmospheric Ar/methane plasma jet and DLC coating deposition[J]. Plasma Science and Technology, 2020, 22(8): 85401-085401. DOI: 10.1088/2058-6272/ab8550
    [2]Haibing LI (李海冰), Jie ZHU (朱杰), Wei YANG (杨威), Xu ZHANG (张旭), Donglai WANG (王东来), Junyu ZHU (朱俊谕), Xingming BIAN (卞星明). Humidity effects on the ground-level resultant electric field of positive DC conductors[J]. Plasma Science and Technology, 2019, 21(7): 74001-074001. DOI: 10.1088/2058-6272/ab0a3f
    [3]Kefeng SHANG (商克峰), Jie LI (李杰), Rino MORENT. Hybrid electric discharge plasma technologies for water decontamination: a short review[J]. Plasma Science and Technology, 2019, 21(4): 43001-043001. DOI: 10.1088/2058-6272/aafbc6
    [4]Ahmed Rida GALALY, Guido VAN OOST. Fast inactivation of microbes and degradation of organic compounds dissolved in water by thermal plasma[J]. Plasma Science and Technology, 2018, 20(8): 85504-085504. DOI: 10.1088/2058-6272/aac1b7
    [5]Li ZHANG (张丽), Dezheng YANG (杨德正), Sen WANG (王森), Wenchun WANG (王文春). Spatiotemporal characteristics of nanosecond pulsed discharge in an extremely asymmetric electric field at atmospheric pressure[J]. Plasma Science and Technology, 2017, 19(6): 64006-064006. DOI: 10.1088/2058-6272/aa632d
    [6]WANG Xiaoping(王小平), LI Zhongjian(李中坚), ZHANG Xingwang(张兴旺), LEI Lecheng(雷乐成). Characteristics of Electrode-Water-Electrode Discharge and its Application to Water Treatment[J]. Plasma Science and Technology, 2014, 16(5): 479-485. DOI: 10.1088/1009-0630/16/5/07
    [7]RAN Huijuan(冉慧娟), WANG Lei(王磊), WANG Jue(王珏), WANG Tao(王涛), YAN Ping(严萍). Discharge Characteristics of SF6 in a Non-Uniform Electric Field Under Repetitive Nanosecond Pulses[J]. Plasma Science and Technology, 2014, 16(5): 465-470. DOI: 10.1088/1009-0630/16/5/05
    [8]LIU Wenzheng(刘文正), WANG Hao(王浩), DOU Zhijun(窦志军). Impact of the Insulator on the Electric Field and Generation Characteristics of Vacuum Arc Metal Plasmas[J]. Plasma Science and Technology, 2014, 16(2): 134-141. DOI: 10.1088/1009-0630/16/2/09
    [9]LIU Wenzheng(刘文正), LI Chuanhui(李传辉). Study on the Generation Characteristics of Dielectric Barrier Discharge Plasmas on Water Surface[J]. Plasma Science and Technology, 2014, 16(1): 26-31. DOI: 10.1088/1009-0630/16/1/06
    [10]ZHU Linan (朱丽楠), WANG Yongjun (王永军), REN Zhijun (任芝军), LIU Guifang (刘桂芳), et al.. The Degradation of Organic Pollutants by Bubble Discharge in Water[J]. Plasma Science and Technology, 2013, 15(10): 1053-1058. DOI: 10.1088/1009-0630/15/10/17

Catalog

    Article views (248) PDF downloads (611) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return