Advanced Search+
Xiaoming ZHU (朱晓鸣), Heng GUO (郭恒), Jianfeng ZHOU (周建锋), Xiaofei ZHANG (张晓菲), Jian CHEN (陈坚), Jing LI (李静), Heping LI (李和平), Jianguo TAN (谭建国). Influences of the cold atmospheric plasma jet treatment on the properties of the demineralized dentin surfaces[J]. Plasma Science and Technology, 2018, 20(4): 44010-044010. DOI: 10.1088/2058-6272/aaa6be
Citation: Xiaoming ZHU (朱晓鸣), Heng GUO (郭恒), Jianfeng ZHOU (周建锋), Xiaofei ZHANG (张晓菲), Jian CHEN (陈坚), Jing LI (李静), Heping LI (李和平), Jianguo TAN (谭建国). Influences of the cold atmospheric plasma jet treatment on the properties of the demineralized dentin surfaces[J]. Plasma Science and Technology, 2018, 20(4): 44010-044010. DOI: 10.1088/2058-6272/aaa6be

Influences of the cold atmospheric plasma jet treatment on the properties of the demineralized dentin surfaces

Funds: supported by National Natural Science Foundation of China (Nos. 11475103 and 81200805) and Beijing Natural Science Foundation (No. 7162204).
More Information
  • Received Date: November 01, 2017
  • Improvement of the bonding strength and durability between the dentin surface and the composite resin is a challenging job in dentistry. In this paper, a radio-frequency atmospheric-pressure glow discharge (RF-APGD) plasma jet is employed for the treatment of the acid-etched dentin surfaces used for the composite restoration. The properties of the plasma treated dentin surfaces and the resin–dentin interfaces are analyzed using the x-ray photoemission spectroscopy, contact angle goniometer, scanning electron microscope and microtensile tester. The experimental results show that, due to the abundant chemically reactive species existing in the RF-APGD plasma jet under a stable and low energy input operating mode, the contact angle of the plasma-treated dentin surfaces decreases to a stable level with the increase of the atomic percentage of oxygen in the specimens; the formation of the long resin tags in the scattered clusters and the hybrid layers at the resin–dentin interfaces significantly improve the bonding strength and durability. These results indicate that the RF-APGD plasma jet is an effective tool for modifying the chemical properties of the dentin surfaces, and for improving the immediate bonding strength and the durability of the resin-dentin bonding in dentistry.
  • [1]
    Zhang X et al 2014 Appl. Microbiol. Biotechnol. 98 5387
    [2]
    Li H-P et al 2017 High Volt. 2 188
    [3]
    Weltmann K-D and von Woedtke T 2016 Plasma Phys. Control. Fusion 59 014031
    [4]
    Dantas M C C et al 2012 J. Endod. 38 215
    [5]
    Atyabi S M et al 2016 Cell Biochem. Biophys. 74 181
    [6]
    Demarco F F et al 2012 Dent. Mater. 28 87
    [7]
    Mollica F et al 2004 J. Mater. Sci.—Mater. Med. 15 485
    [8]
    Nakabayashi N, Kojima K and Masuhara E 1982 J. Biomed. Mater. Res. 16 265
    [9]
    Silva N R F A et al 2011 J. Biomed. Mater. Res. B 99 199
    [10]
    Liebermann A et al 2013 Dent. Mater. 29 935
    [11]
    Ritts A C et al 2010 Eur. J. Oral Sci. 118 510
    [12]
    Dong X et al 2014 Clin. Plasma Med. 2 11
    [13]
    Chen M et al 2013 Dent. Mater. 29 871
    [14]
    Dong X et al 2015 Clin. Plasma Med. 3 10
    [15]
    Dong X et al 2013 Eur. J. Oral Sci. 121 355
    [16]
    Lehmann A et al 2013 Plasma Process. Polym. 10 262
    [17]
    Han G-J et al 2014 Eur. J. Oral Sci. 122 417
    [18]
    Hirata R et al 2016 J. Adhes. Dent. 18 215
    [19]
    Naudé N et al 2005 J. Phys. D: Appl. Phys. 38 530
    [20]
    Chen M et al 2014 Dent. Mater. 30 1369
    [21]
    Li H-P et al 2012 IEEE Trans. Plasma Sci. 40 2853
    [22]
    Li H-P et al 2012 High Volt. Eng. 38 1588 (in Chinese)
    [23]
    Wang Z-B et al 2012 Plasma Chem. Plasma Process. 32 859
    [24]
    Zhang X-F et al 2014 Appl. Therm. Eng. 72 82
    [25]
    Li H-P et al 2007 Plasma Chem. Plasma Process. 27 529
    [26]
    Pipa A V et al 2012 J. Phys. D: Appl. Phys. 45 085201
    [27]
    Sun W-T et al 2007 Plasma Sources Sci. Technol. 16 290
    [28]
    Fricke K et al 2012 PLoS One 7 e42539
    [29]
    F?rster S, Mohr C and Vi?l W 2005 Surf. Coat. Technol. 200 827
    [30]
    Liu Y et al 2016 J. Dent. Res. 95 496
    [31]
    Gilliam M and Yu Q 2007 J. Appl. Polym. Sci. 105 360
    [32]
    Koban I et al 2011 Plasma Process. Polym. 8 975
    [33]
    Fricke K et al 2011 Plasma Process. Polym. 8 51
    [34]
    Kylián O et al 2008 J. Phys. D: Appl. Phys. 41 095201
    [35]
    Pashley D H and Carvalho R M 1997 J. Dent. 25 355
    [36]
    Armstrong S R, Keller J C and Boyer D B 2001 Dent. Mater. 17 268
    [37]
    Spencer P et al 2010 Ann. Biomed. Eng. 38 1989
  • Related Articles

    [1]Mangilal CHOUDHARY, Poyyeri Kunnath SREEJITH. Response of the low-pressure hot-filament discharge plasma to a positively biased auxiliary disk electrode[J]. Plasma Science and Technology, 2022, 24(1): 015401. DOI: 10.1088/2058-6272/ac3641
    [2]Bang LI (李邦), Tingfeng MING (明廷凤), Qing ZHUANG (庄清), Feifei LONG (龙飞飞), Shanlu GAO (高善露), Qiqi SHI (石奇奇), Yumin WANG (王嵎民), Xiaoju LIU (刘晓菊), Shaocheng LIU (刘少承), Long ZENG (曾龙), Xiang GAO (高翔). Experimental study of ELM-induced filament structures using the VUV imaging system on EAST[J]. Plasma Science and Technology, 2021, 23(3): 35104-035104. DOI: 10.1088/2058-6272/abda9d
    [3]Fan ZHOU (周凡), Tingfeng MING (明廷凤), Yumin WANG (王嵎民), Feifei LONG (龙飞飞), Qing ZHUANG (庄清), Shaocheng LIU (刘少承), Guoqiang LI (李国强), Xiang GAO (高翔), the EAST team. Observation of filament-like structures in ELMy H-mode plasma with a VUV imaging system developed on the EAST tokamak[J]. Plasma Science and Technology, 2019, 21(9): 95101-095101. DOI: 10.1088/2058-6272/ab1b1b
    [4]Qingquan YANG (杨清泉), Fangchuan ZHONG (钟方川), Guosheng XU (徐国盛), Ning YAN (颜宁), Liang CHEN (陈良), Xiang LIU (刘祥), Yong LIU (刘永), Liang WANG (王亮), Zhendong YANG (仰振东), Yifeng WANG (王一丰), Yang YE (叶扬), Heng ZHANG (张恒), Xiaoliang LI (李小良). Combined Langmuir-magnetic probe measurements of type-I ELMy filaments in the EAST tokamak[J]. Plasma Science and Technology, 2018, 20(6): 65101-065101. DOI: 10.1088/2058-6272/aaab43
    [5]NIE Lin (聂林), CHENG Jun (程钧), XU Hongbing (徐红兵), HUANG Yuan (黄渊), YAN Longwen (严龙文), DING Xuantong (丁玄同), XU Min (许敏), XU Yuhong (许宇鸿), YAO Lianghua (姚良骅), FENG Beibin (冯北滨), ZHU Genliang (朱根良), LIU Wandong (刘万东), DONG Jiaqi (董家齐), YU Deliang (余德良), ZHONG Wulv (钟武律), GAO Jinming (高金明), CHEN Chengyuan (陈程远), YANG Qingwei (杨青巍), DUAN Xuru (段旭如). Comparison of ELM-Filament Mitigation Between Supersonic Molecular Beam Injection and Pellet Injection on HL-2A[J]. Plasma Science and Technology, 2016, 18(2): 120-125. DOI: 10.1088/1009-0630/18/2/04
    [6]RU Lili(汝丽丽), MENG Yuedong(孟月东), HUANG Jianjun(黄建军), QI Bing(齐冰). On-Line Measurement of Ion Density in Atmospheric Nitrogen Discharge Filaments via Radiation Signals from Plasma Oscillation[J]. Plasma Science and Technology, 2014, 16(5): 448-453. DOI: 10.1088/1009-0630/16/5/02
    [7]Imola MOLNAR, Judit PAPP, Alpar SIMON, Sorin Dan ANGHEL. Deactivation of Streptococcus mutans Biofilms on a Tooth Surface Using He Dielectric Barrier Discharge at Atmospheric Pressure[J]. Plasma Science and Technology, 2013, 15(6): 535-541. DOI: 10.1088/1009-0630/15/6/09
    [8]XIA Xiongping (夏雄平), YI Lin (易林). Relativistic Filamentation of Intense Laser Beam in Inhomogeneous Plasma[J]. Plasma Science and Technology, 2012, 14(12): 1054-1058. DOI: 10.1088/1009-0630/14/12/04
    [9]LI Sen, CHEN Qiang, LIU Zhongwei. Restraining Effect of Filaments on Applied Voltage[J]. Plasma Science and Technology, 2012, 14(1): 28-31. DOI: 10.1088/1009-0630/14/1/07
    [10]CHEN Mudi (陈牧笛), ZHU Xiaodong (朱晓东), KE Bo (柯博), DING Fang (丁芳), WEN Xiaohui (温晓辉), ZHOU Haiyang (周海洋). Formation of SiC Nanostruture Using Hexamethyldisiloxane During Plasma-Assisted Hot-Filament Chemical Vapor Deposition[J]. Plasma Science and Technology, 2010, 12(5): 547-550.

Catalog

    Article views (282) PDF downloads (656) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return