Advanced Search+
Chenchen WU (吴辰宸), Xinfeng SUN (孙新锋), Zuo GU (顾左), Yanhui JIA (贾艳辉). Numerical research of a 2D axial symmetry hybrid model for the radio-frequency ion thruster[J]. Plasma Science and Technology, 2018, 20(4): 45502-045502. DOI: 10.1088/2058-6272/aaa8d9
Citation: Chenchen WU (吴辰宸), Xinfeng SUN (孙新锋), Zuo GU (顾左), Yanhui JIA (贾艳辉). Numerical research of a 2D axial symmetry hybrid model for the radio-frequency ion thruster[J]. Plasma Science and Technology, 2018, 20(4): 45502-045502. DOI: 10.1088/2058-6272/aaa8d9

Numerical research of a 2D axial symmetry hybrid model for the radio-frequency ion thruster

More Information
  • Received Date: November 06, 2017
  • Since the high efficiency discharge is critical to the radio-frequency ion thruster (RIT), a 2D axial symmetry hybrid model has been developed to study the plasma evolution of RIT. The fluid method and the drift energy correction of the electron energy distribution function (EEDF) are applied to the analysis of the RIT discharge. In the meantime, the PIC-MCC method is used to investigate the ion beam current extraction character for the plasma plume region. The beam current simulation results, with the hybrid model, agree well with the experimental results, and the error is lower than 11%, which shows the validity of the model. The further study shows there is an optimal ratio for the radio-frequency (RF) power and the beam current extraction power under the fixed RIT configuration. And the beam extraction efficiency will decrease when the discharge efficiency beyond a certain threshold (about 87 W). As the input parameters of the hybrid model are all the design values, it can be directly used to the optimum design for other kinds of RITs and radio-frequency ion sources.
  • [1]
    Goebel D M 2008 IEEE Trans. Plasma Sci. 36 2111
    [2]
    Lymberopoulos D P and Economou D L 1995 IEEE Trans. Plasma Sci. 23 573
    [3]
    Panagopoulos T et al 2002 J. Appl. Phys. 91 2687
    [4]
    Kawamura E, Graves D B and Lieberman M A 2011 Plasma Sources Sci. Technol. 20 035009
    [5]
    Bukowski J D and Graves D B 1996 J. Appl. Phys. 80 2614
    [6]
    Mouchtouris S and Kokkoris G 2016 Plasma Sources Sci. Technol. 25 025007
    [7]
    Mouchtouris S and Kokkoris G 2017 Plasma Process. Polym. 14 1600147
    [8]
    Turkoz E and Celik M 2014 IEEE Trans. Plasma Sci. 42 235
    [9]
    Turkoz E and Celik M 2015 J. Comput. Phys. 286 87
    [10]
    Suekane T et al 1996 IEEE Trans. Plasma Sci. 24 1147
    [11]
    Surendra M and Graves D B 1991 IEEE Trans. Plasma Sci. 19 144
    [12]
    Kawamura E et al 1999 Plasma Sources Sci. Technol. 8 R45
    [13]
    Kolobov V and Arslanbekov R 2003 Microelectron. Eng. 69 606
    [14]
    Kolobov V I and Arslanbekov R R 2006 IEEE Trans. Plasma Sci. 34 895
    [15]
    Alves L L and Marques L 2012 Plasma Phys. Control. Fusion 54 124012
    [16]
    van Dijk J, Kroesen G M W and Bogaerts A 2009 J. Phys. D Appl. Phys. 42 190301
    [17]
    Mistoco V F and Bilén S 2008 Numerical modeling of a miniature radio-frequency ion thruster Proc. to the 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. & Exhibit, Joint Propulsion Conf. (Hartford, CT) (AIAA)
    [18]
    Tsay M M T and Martinez-Sanchez M 2008 Two-dimensional simulation of a radio-frequency ion thruster discharge Proc. of the 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. & Exhibit, Joint Propulsion Conf. (Hartford, CT) (AIAA)
    [19]
    Mikellides I G et al 2005 J. Appl. Phys. 98 113303
    [20]
    Tsay M M T et al 2010 Two-Dimensional Numerical Modeling of Radio-Frequency Ion Engine Discharge PhD Thesis Massachusetts Institute of Technology (https://dspace.mit. edu/handle/1721.1/62713)
    [21]
    Gans T, der Gathen V S V and D?bele H F 2004 EPL 66 232
    [22]
    Godyak V A, Piejak R B and Alexandrovich B M 2002 Plasma Sources Sci. Technol. 11 525
    [23]
    Mendil D, Lahmar H and Boufendi L 2014 Plasma Sci. Technol. 16 837
    [24]
    Wang Q et al 2017 Plasma Sci. Technol. 19 064013
  • Related Articles

    [1]Mangilal CHOUDHARY, Poyyeri Kunnath SREEJITH. Response of the low-pressure hot-filament discharge plasma to a positively biased auxiliary disk electrode[J]. Plasma Science and Technology, 2022, 24(1): 015401. DOI: 10.1088/2058-6272/ac3641
    [2]Bang LI (李邦), Tingfeng MING (明廷凤), Qing ZHUANG (庄清), Feifei LONG (龙飞飞), Shanlu GAO (高善露), Qiqi SHI (石奇奇), Yumin WANG (王嵎民), Xiaoju LIU (刘晓菊), Shaocheng LIU (刘少承), Long ZENG (曾龙), Xiang GAO (高翔). Experimental study of ELM-induced filament structures using the VUV imaging system on EAST[J]. Plasma Science and Technology, 2021, 23(3): 35104-035104. DOI: 10.1088/2058-6272/abda9d
    [3]Fan ZHOU (周凡), Tingfeng MING (明廷凤), Yumin WANG (王嵎民), Feifei LONG (龙飞飞), Qing ZHUANG (庄清), Shaocheng LIU (刘少承), Guoqiang LI (李国强), Xiang GAO (高翔), the EAST team. Observation of filament-like structures in ELMy H-mode plasma with a VUV imaging system developed on the EAST tokamak[J]. Plasma Science and Technology, 2019, 21(9): 95101-095101. DOI: 10.1088/2058-6272/ab1b1b
    [4]Qingquan YANG (杨清泉), Fangchuan ZHONG (钟方川), Guosheng XU (徐国盛), Ning YAN (颜宁), Liang CHEN (陈良), Xiang LIU (刘祥), Yong LIU (刘永), Liang WANG (王亮), Zhendong YANG (仰振东), Yifeng WANG (王一丰), Yang YE (叶扬), Heng ZHANG (张恒), Xiaoliang LI (李小良). Combined Langmuir-magnetic probe measurements of type-I ELMy filaments in the EAST tokamak[J]. Plasma Science and Technology, 2018, 20(6): 65101-065101. DOI: 10.1088/2058-6272/aaab43
    [5]NIE Lin (聂林), CHENG Jun (程钧), XU Hongbing (徐红兵), HUANG Yuan (黄渊), YAN Longwen (严龙文), DING Xuantong (丁玄同), XU Min (许敏), XU Yuhong (许宇鸿), YAO Lianghua (姚良骅), FENG Beibin (冯北滨), ZHU Genliang (朱根良), LIU Wandong (刘万东), DONG Jiaqi (董家齐), YU Deliang (余德良), ZHONG Wulv (钟武律), GAO Jinming (高金明), CHEN Chengyuan (陈程远), YANG Qingwei (杨青巍), DUAN Xuru (段旭如). Comparison of ELM-Filament Mitigation Between Supersonic Molecular Beam Injection and Pellet Injection on HL-2A[J]. Plasma Science and Technology, 2016, 18(2): 120-125. DOI: 10.1088/1009-0630/18/2/04
    [6]RU Lili(汝丽丽), MENG Yuedong(孟月东), HUANG Jianjun(黄建军), QI Bing(齐冰). On-Line Measurement of Ion Density in Atmospheric Nitrogen Discharge Filaments via Radiation Signals from Plasma Oscillation[J]. Plasma Science and Technology, 2014, 16(5): 448-453. DOI: 10.1088/1009-0630/16/5/02
    [7]Imola MOLNAR, Judit PAPP, Alpar SIMON, Sorin Dan ANGHEL. Deactivation of Streptococcus mutans Biofilms on a Tooth Surface Using He Dielectric Barrier Discharge at Atmospheric Pressure[J]. Plasma Science and Technology, 2013, 15(6): 535-541. DOI: 10.1088/1009-0630/15/6/09
    [8]XIA Xiongping (夏雄平), YI Lin (易林). Relativistic Filamentation of Intense Laser Beam in Inhomogeneous Plasma[J]. Plasma Science and Technology, 2012, 14(12): 1054-1058. DOI: 10.1088/1009-0630/14/12/04
    [9]LI Sen, CHEN Qiang, LIU Zhongwei. Restraining Effect of Filaments on Applied Voltage[J]. Plasma Science and Technology, 2012, 14(1): 28-31. DOI: 10.1088/1009-0630/14/1/07
    [10]CHEN Mudi (陈牧笛), ZHU Xiaodong (朱晓东), KE Bo (柯博), DING Fang (丁芳), WEN Xiaohui (温晓辉), ZHOU Haiyang (周海洋). Formation of SiC Nanostruture Using Hexamethyldisiloxane During Plasma-Assisted Hot-Filament Chemical Vapor Deposition[J]. Plasma Science and Technology, 2010, 12(5): 547-550.

Catalog

    Article views (240) PDF downloads (493) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return