Advanced Search+
Zhe RUAN (阮哲), Yajun GUO (郭亚俊), Jing GAO (高静), Chunjun YANG (杨春俊), Yan LAN (兰彦), Jie SHEN (沈洁), Zimu XU (许子牧), Cheng CHENG (程诚), Xinghao LIU (刘行浩), Shumei ZHANG (张书梅), Wenhui DU (杜文辉), Paul K CHU (朱剑豪). Control of multidrug-resistant planktonic Acinetobacter baumannii: biocidal efficacy study by atmospheric-pressure air plasma[J]. Plasma Science and Technology, 2018, 20(6): 65513-065513. DOI: 10.1088/2058-6272/aab302
Citation: Zhe RUAN (阮哲), Yajun GUO (郭亚俊), Jing GAO (高静), Chunjun YANG (杨春俊), Yan LAN (兰彦), Jie SHEN (沈洁), Zimu XU (许子牧), Cheng CHENG (程诚), Xinghao LIU (刘行浩), Shumei ZHANG (张书梅), Wenhui DU (杜文辉), Paul K CHU (朱剑豪). Control of multidrug-resistant planktonic Acinetobacter baumannii: biocidal efficacy study by atmospheric-pressure air plasma[J]. Plasma Science and Technology, 2018, 20(6): 65513-065513. DOI: 10.1088/2058-6272/aab302

Control of multidrug-resistant planktonic Acinetobacter baumannii: biocidal efficacy study by atmospheric-pressure air plasma

Funds: This work is supported by the Spark Program of the second Affiliated Hospital of Anhui Medical University (Grant No. 2015hhjh04), National Natural Science Foundation of China under Grant No. 51777206, Natural Science Foundation of Anhui Province (Grant No. 1708085MA13 and No. 1708085MB47), Science Foundation of Institute of Plasma Physics, Chinese Academy of Sciences under Grant (No. DSJJ-14-YY02), City University of Hong Kong Applied Research Grant (ARG)(No. 9667144), Hong Kong Research Grants Council (RGC)General Research Funds (GRF)(No. CityU 11301215), Doctoral Fund of Ministry of Education of China (No. 2017M612058), Specialized Research Fund for the Doctoral Program of Hefei University of Technology (No. JZ2016HGBZ0768), Foundation of Anhui Province Key Laboratory of Medical Physics and Technology (Grant No. LMPT2017Y7BP0U1581).
More Information
  • Received Date: December 08, 2017
  • In this research, an atmospheric-pressure air plasma is used to inactivate the multidrug-resistant Acinetobacter baumannii in liquid. The efficacy of the air plasma on bacterial deactivation and the cytobiological variations after the plasma treatment are investigated. According to colony forming units, nearly all the bacteria (6-log) are inactivated after 10 min of air plasma treatment. However, 7% of the bacteria enter a viable but non-culturable state detected by the resazurin based assay during the same period of plasma exposure. Meanwhile, 86% of the bacteria lose their membrane integrity in the light of SYTO 9/PI staining assay. The morphological changes in the cells are examined by scanning electron microscopy and bacteria with morphological changes are rare after plasma exposure in the liquid. The concentrations of the long-living RS, such as H2O2, NO3-, and O3, in liquid induced by plasma treatment are measured, and they increase with plasma treatment time. The changes of the intracellular ROS may be related to cell death, which may be attributed to oxidative stress and other damage effects induced by RS plasma generated in liquid. The rapid and effective bacteria inactivation may stem from the RS in the liquid generated by plasma and air plasmas may become a valuable therapy in the treatment of infected wounds.
  • [1]
    Howard A et al 2012 Virulence 3 243
    [2]
    Pittet D and Dharan S 2008 Lancet Infect. Dis. 8 585
    [3]
    Anton Y P, Seifert H and Paterson D L 2008 Clin. Microbiol. Rev. 21 538
    [4]
    Guerrero D M et al 2010 Surg. Infect. 11 49
    [5]
    Roca I et al 2012 Front. Microbiol. 3 148
    [6]
    Kelly K N and Monson J R T 2012 Surgery (Oxford) 30 640
    [7]
    Liu X F et al 2016 Int. J. Antimicrob. Agents 48 559
    [8]
    Rashmei Z, Bornasi H and Ghoranneviss M 2016 J. Water Health 14 609
    [9]
    Cooper M et al 2010 J. Appl. Microbiol. 109 2039
    [10]
    Keidar M et al 2013 Phys. Plasmas 20 057101
    [11]
    Li Y et al 2017 Sci. Rep. 7 45781
    [12]
    Kuo S P et al 2009 New J. Phys. 11 115016
    [13]
    Kalghatgi S et al 2011 PLoS One 6 e16270
    [14]
    Lu X P et al 2014 Phys. Rep. 540 123
    [15]
    Roxana S T and Gerrit M W K 2011 IEEE Trans. Plasma Sci. 39 2978
    [16]
    Baier M et al 2013 Postharvest Biol. Technol. 84 81
    [17]
    Keidar M and Robert E 2015 Phys. Plasmas 22 121901
    [18]
    Moisan M et al 2002 Pure Appl. Chem. 74 349
    [19]
    Xu D et al 2017 Plasma Sci. Technol. 19 064004
    [20]
    Shang K F et al 2017 Plasma Sci. Technol. 19 064017
    [21]
    Joshi S G et al 2010 Am. Infect. Control 38 293
    [22]
    Machala Z et al 2013 Plasma Process. Polym. 10 649
    [23]
    Jamróz P, Gr?daKand Poh? P 2014 Plasma Process. Polym. 11 755
    [24]
    Ikawa S, Kitano K and Hamaguchi S 2010 Plasma Process. Polym. 7 33
    [25]
    Wu H Y et al 2012 Plasma Process. Polym. 9 417
    [26]
    Bai N et al 2011 Plasma Process. Polym. 8 424
    [27]
    Wu S Q et al 2010 IEEE Trans. Plasma Sci. 38 3404
    [28]
    David S et al 2008 Plasma Sources Sci. Technol. 17 025013
    [29]
    Liu Y et al 2017 Sci. Rep. 7 7980
    [30]
    Xu Z M et al 2015 Appl. Phys. Lett. 106 213701
    [31]
    Wang Y Y et al 2017 Plasma Sci. Technol. 19 025503
    [32]
    Krause M et al 2008 Anal. Chem. 80 8568
    [33]
    O’Brien J et al 2000 Eur. J. Biochem. 267 5421
    [34]
    Cui Y et al 2012 Biomaterials 33 2327
    [35]
    Shen J et al 2015 Plasma Process. Polym. 12 252
    [36]
    Zhang H et al 2015 Sci. Rep. 5 10031
    [37]
    Dolezalova E and Lukes P 2015 Bioelectrochemistry 103 7
    [38]
    Muela A et al 2008 FEMS Microbiol. Ecol. 64 28
    [39]
    Xu Z M et al 2015 Plasma Process. Polym. 12 827
    [40]
    Xu Z M et al 2017 J. Phys. D Appl. Phys. 50 105201
    [41]
    Cook K L and Bolster C H 2007 J. Appl. Microbiol. 103 573
    [42]
    Besnard V et al 2002 Vet. Res. 33 359
    [43]
    Meng L et al 2015 FEMS Microbiol. Ecol. 91 ?v035
    [44]
    Zhao Y, Ogino A and Nagatsu M 2011 Appl. Phys. Lett. 98 191501
    [45]
    Shen J et al 2014 Jpn. J. Appl. Phys. 53 110310
    [46]
    Gutteridge J M 1995 Clin. Chem. 41 1819 (http://clinchem. aaccjnls.org/content/clinchem/41/12/1919.full.pdf)
    [47]
    Lefebre M D and Valvano M A 2001 Microbiology 147 97
    [48]
    Locke B R and Shih K Y 2011 Plasma Sources Sci. Technol. 20 034006
    [49]
    Graham W G and Stalder K R 2011 J. Phys. D Appl. Phys. 44 174037
    [50]
    Brisset J L et al 2011 Plasma Sources Sci. Technol. 20 034021
    [51]
    Tang Y Z et al 2008 Plasma Process. Polym. 5 552
    [52]
    Rhee S G 2006 Science 312 1882
    [53]
    Ruef J et al 1997 Circ. Res. 81 24
    [54]
    Arjunan K P and Clyne A M 2011 Plasma Process. Polym. 8 1154
    [55]
    Lu X et al 2016 Phys. Rep. 630 1
    [56]
    Lukes P et al 2014 Plasma Sources Sci. Technol. 23 015019
  • Related Articles

    [1]Lei ZHANG, Dengcheng ZHANG, Jinlu YU, Bingbing ZHAO, Xinyu QU, Yi CHEN, Weida CHENG. Experimental study on the improvement of spray characteristics of aero-engines using gliding arc plasma[J]. Plasma Science and Technology, 2023, 25(3): 035502. DOI: 10.1088/2058-6272/ac92cf
    [2]Kai ZHAO (赵凯), Baigang SUN (孙佰刚), Yongji LU (卢永吉), Feng LI (李锋), Yongbo LIU (刘永波), Xiangbin LIU (刘祥彬), Kefu WANG (王可夫). Experimental investigation on plasma jet deflection with magnetic fluid control based on PIV measurement[J]. Plasma Science and Technology, 2019, 21(2): 25503-025503. DOI: 10.1088/2058-6272/aae09b
    [3]Linbo GU (顾林波), Yixi CAI (蔡忆昔), Yunxi SHI (施蕴曦), Jing WANG (王静), Xiaoyu PU (濮晓宇), Jing TIAN (田晶), Runlin FAN (樊润林). Effect of indirect non-thermal plasma on particle size distribution and composition of diesel engine particles[J]. Plasma Science and Technology, 2017, 19(11): 115503. DOI: 10.1088/2058-6272/aa7f6e
    [4]Tianwei LAI (赖天伟), Bao FU (付豹), Shuangtao CHEN (陈双涛), Qiyong ZHANG (张启勇), Yu HOU (侯予). Numerical analysis of the static performance of an annular aerostatic gas thrust bearing applied in the cryogenic turbo-expander of the EAST subsystem[J]. Plasma Science and Technology, 2017, 19(2): 25604-025604. DOI: 10.1088/2058-6272/19/2/025604
    [5]Le Chi KIEN. Analyses on the Ionization Instability of Non-Equilibrium Seeded Plasma in an MHD Generator[J]. Plasma Science and Technology, 2016, 18(6): 674-679. DOI: 10.1088/1009-0630/18/6/15
    [6]PANG Xuexia(庞学霞), DENG Zechao(邓泽超), JIA Pengying(贾鹏英), LIANG Weihua(梁伟华). Influence of Ionization Degrees on Conversion of CO and CO 2 in Atmospheric Plasma near the Ground[J]. Plasma Science and Technology, 2014, 16(8): 782-788. DOI: 10.1088/1009-0630/16/8/09
    [7]F. L. BRAGA. MHD Equilibrium with Reversed Current Density and Magnetic Islands Revisited: the Vacuum Vector Potential Calculus[J]. Plasma Science and Technology, 2013, 15(10): 985-988. DOI: 10.1088/1009-0630/15/10/05
    [8]M. ANWARI, H. H. QAZI, SUKARSAN, N. HARADA. Numerical Analysis of MHD Accelerator with Non-Equilibrium Air Plasma[J]. Plasma Science and Technology, 2012, 14(12): 1110-1115. DOI: 10.1088/1009-0630/14/12/14
    [9]PANG Xuexia(庞学霞), DENG Zechao(邓泽超), JIA Pengying(贾鹏英), LIANG Weihua(梁伟华), LI Xia(李霞). Influence of Ionization Degrees on the Evolutions of Charged Particles in Atmospheric Plasma at Low Altitude[J]. Plasma Science and Technology, 2012, 14(8): 716-722. DOI: 10.1088/1009-0630/14/8/07
    [10]Sankarsan Mohapatro, B S Rajanikanth. Study of Pulsed Plasma in a Crossed Flow Dielectric Barrier Discharge Reactor for Improvement of NOx Removal in Raw Diesel Engine Exhaust[J]. Plasma Science and Technology, 2011, 13(1): 82-87.

Catalog

    Article views (260) PDF downloads (357) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return