Advanced Search+
PANG Xuexia(庞学霞), DENG Zechao(邓泽超), JIA Pengying(贾鹏英), LIANG Weihua(梁伟华). Influence of Ionization Degrees on Conversion of CO and CO 2 in Atmospheric Plasma near the Ground[J]. Plasma Science and Technology, 2014, 16(8): 782-788. DOI: 10.1088/1009-0630/16/8/09
Citation: PANG Xuexia(庞学霞), DENG Zechao(邓泽超), JIA Pengying(贾鹏英), LIANG Weihua(梁伟华). Influence of Ionization Degrees on Conversion of CO and CO 2 in Atmospheric Plasma near the Ground[J]. Plasma Science and Technology, 2014, 16(8): 782-788. DOI: 10.1088/1009-0630/16/8/09

Influence of Ionization Degrees on Conversion of CO and CO 2 in Atmospheric Plasma near the Ground

Funds: supported by the Research Foundation of Education Bureau of Hebei Province, China (No. Q2012084), National Natural Science Foundation of China (No. 10805013) and Natural Science Foundation of Hebei Province, China (No. A2011201132)
More Information
  • Received Date: July 24, 2013
  • A zero-dimensional model is used to study the processes of physical and chemical reactions in atmospheric plasma with different ionization degrees near the ground (0 km). The temporal evolutions of CO, CO 2 and other main reactants (namely OH and O 2 ), which affect the conversion of CO and CO 2 , are obtained for afterglow plasma with different initial values. The results show that the consumption rate of CO is largest when the initial electron number density ne0 =1012 cm −3, i.e. the ionization degree is 0.000004%. The number density of CO 2 is relatively small when n e0 =10 16 cm −3, i.e. the ionization degree is 0.04%, whereas they are very close under the condition of other ionization degrees. Considering the total number densities of CO and CO 2 and the consumption rate of CO comprehensively, the best condition is n e0 =10 13 cm −3, i.e. the ionization degree is 0.00004% for reducing the densities of CO and CO 2 in the atmospheric plasma. The temporal evolutions of N +, Ar +, CO + and CO + 2 are also shown, and the influences on the temporal evolutions of CO and CO 2 are analyzed with increasing ionization degree.
  • 1.Si Kang. 2010, Light Vehicles, Z4: 47 (in Chinese)
    2.Tikuisis P, Kane D M, Mclellan T M, et al. 1992, J. Appl. Physiol., 72: 1311
    3.National Research Council. 2010, Advancing the Sci-ence of Climate Change. National Academies Press, Washington DC
    4.Heicklen J. 1976, Atmospheric Chemistry. Academic Press, New York
    5.Pundir B P. 2007, Engine Emissions: Pollutant For-mation and Advances in Control Technology. Alpha Science International Limited
    6 Baulch D L, Coc R A, Crutzen P J, et al. 1982, J. Phys. Chem. Ref. Data, 11: 327
    7 Carpenter L J, Clemitshow K C, Burgess R A, et al. 1998, Atmos. Environ., 32: 3353
    8 Calvert J G and Lindberg S E. 2003, Atmos. Environ., 37: 4467
    9 Mauzerall D, Logan J, Jacob D, et al. 1998, J. Geo-phys. Res., 103: 8401
    10 Laj P, Klausen J, Bilde M, et al. 2009, Atmos. Envi-ron., 43: 5351
    11 Buchwitz M, Khlystova I, Bovensmann H, et al. 2007, Atmos. Chem. Phys., 7: 2399
    12 Clerbaux C, Edwards D P, Deeter M, et al. 2008, Geo-phys. Res. Lett., 35: L03817
    13 Petersen A K, Warneke T, Lawrence M G, et al. 2008, Geophys. Res. Lett., 35: L03813
    14 Shindell D T, Faluvegi G, Emmons L K. 2005, J. Geo-phys. Res., 110: D23303
    15 Pang X X, Deng Z C, Jia P Y, et al. 2010, Environ-mental Engineering, 28: 179 (in Chinese)
    16 Ouyang J M, Guo W, Wang L, et al. 2004, Chin. Phys. B, 13: 2174
    17 Ouyang J M, Guo W, Wang L, et al. 2005, Chin. Phys. B, 14: 154
    18 Pang X X, Deng Z C and Dong L F. 2008, Acta. Phys-ica. Sinica, 57: 5081 (in Chinese)
    19 Pang X X, Deng Z C, Jia P Y, et al. 2011, Acta. Phys-ica. Sinica, 60: 125201 (in Chinese)
    20 Pang X X, Deng Z C, Jia P Y, et al. 2012, Plasma Science and Technology, 14: 716
    21.Liu J F, Li J L and Bai Y H. 2000, Research of Envi-ronmental Sciences, 13: 44 (in Chinese)
  • Related Articles

    [1]Zeyu HAO (郝泽宇), JianSONG(宋健), YueHUA(滑跃), Gailing ZHANG (张改玲), Xiaodong BAI (白晓东), Chunsheng REN (任春生). Frequency dependence of plasma characteristics at different pressures in cylindrical inductively coupled plasma source[J]. Plasma Science and Technology, 2019, 21(7): 75401-075401. DOI: 10.1088/2058-6272/ab1035
    [2]Yong WANG (王勇), Cong LI (李聪), Jielin SHI (石劼霖), Xingwei WU (吴兴伟), Hongbin DING (丁洪斌). Measurement of electron density and electron temperature of a cascaded arc plasma using laser Thomson scattering compared to an optical emission spectroscopic approach[J]. Plasma Science and Technology, 2017, 19(11): 115403. DOI: 10.1088/2058-6272/aa861d
    [3]WANG Hongyu (王虹宇), JIANG Wei (姜巍), SUN Peng (孙鹏), ZHAO Shuangyun (赵双云), LI Yang (李阳). Modeling of Perpendicularly Driven Dual-Frequency Capacitively Coupled Plasma[J]. Plasma Science and Technology, 2016, 18(2): 143-146. DOI: 10.1088/1009-0630/18/2/08
    [4]ZHANG Zhihui(张志辉), WU Xuemei(吴雪梅), NING Zhaoyuan(宁兆元). The Effect of Inductively Coupled Discharge on Capacitively Coupled Nitrogen-Hydrogen Plasma[J]. Plasma Science and Technology, 2014, 16(4): 352-355. DOI: 10.1088/1009-0630/16/4/09
    [5]XU Yijun (徐轶君), WU Xuemei (吴雪梅), YE Chao (叶超). Effect of Low-Frequency Power on Etching Characteristics of 6H-SiC in C 4 F 8 /Ar Dual-Frequency Capacitively Coupled Plasma[J]. Plasma Science and Technology, 2013, 15(10): 1066-1070. DOI: 10.1088/1009-0630/15/10/19
    [6]BAI Yang (柏洋), JIN Chenggang (金成刚), YU Tao (余涛), WU Xuemei (吴雪梅), et al.. Experimental Characterization of Dual-Frequency Capacitively Coupled Plasma with Inductive Enhancement in Argon[J]. Plasma Science and Technology, 2013, 15(10): 1002-1005. DOI: 10.1088/1009-0630/15/10/08
    [7]Panagiotis SVARNAS. Vibrational Temperature of Excited Nitrogen Molecules Detected in a 13.56 MHz Electrical Discharge by Sheath-Side Optical Emission Spectroscopy[J]. Plasma Science and Technology, 2013, 15(9): 891-895. DOI: 10.1088/1009-0630/15/9/11
    [8]HU Hui (胡辉), CHEN Weipeng(陈卫鹏), Zhang Jin-li (张锦丽), LU Xi (陆僖), HE Junjia(何俊佳). Influence of plasma temperature on the concentration of NO produced by pulsed arc discharge[J]. Plasma Science and Technology, 2012, 14(3): 257-262. DOI: 10.1088/1009-0630/14/3/13
    [9]YU Yiqing(虞一青), XIN Yu(辛煜), LU Wenqi(陆文琪), NING Zhaoyuan(宁兆元). Abnormal Enhancement of N2+ Emission Induced by Lower Frequencies in N2 Dual-Frequency Capacitively Coupled Plasmas[J]. Plasma Science and Technology, 2012, 14(3): 222-226. DOI: 10.1088/1009-0630/14/3/07
    [10]N. U. REHMAN, F. U. KHAN, S. NASEER, G. MURTAZA, S. S. HUSSAIN, I. AHMAD, M. ZAKAULLAH. Trace-Rare-Gas Optical Emission Spectroscopy of Nitrogen Plasma Generated at a Frequency of 13.56 MHz[J]. Plasma Science and Technology, 2011, 13(2): 208-212.

Catalog

    Article views (203) PDF downloads (1028) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return