Advanced Search+
XU Yijun (徐轶君), WU Xuemei (吴雪梅), YE Chao (叶超). Effect of Low-Frequency Power on Etching Characteristics of 6H-SiC in C 4 F 8 /Ar Dual-Frequency Capacitively Coupled Plasma[J]. Plasma Science and Technology, 2013, 15(10): 1066-1070. DOI: 10.1088/1009-0630/15/10/19
Citation: XU Yijun (徐轶君), WU Xuemei (吴雪梅), YE Chao (叶超). Effect of Low-Frequency Power on Etching Characteristics of 6H-SiC in C 4 F 8 /Ar Dual-Frequency Capacitively Coupled Plasma[J]. Plasma Science and Technology, 2013, 15(10): 1066-1070. DOI: 10.1088/1009-0630/15/10/19

Effect of Low-Frequency Power on Etching Characteristics of 6H-SiC in C 4 F 8 /Ar Dual-Frequency Capacitively Coupled Plasma

Funds: supported by National Natural Science Foundation of China (Nos.10975105, 11275136, 10975106, 11175126, 11204266 and 11075114), the National Magnetic Confinement Fusion Science Program of China (Nos.2010GB106000, 2010GB106009), the Open Project of State Key Laboratory of Functional Materials for Information and Qing Lan Project, a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions and the Program for graduates Research & Innovation in University of Jiangsu Province, China (No.CX10B-031Z)
More Information
  • Received Date: November 29, 2011
  • Dry etching of 6H silicon carbide (6H-SiC) wafers in a C 4 F 8 /Ar dual-frequency capacitively coupled plasma (DF-CCP) was investigated. Atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) were used to measure the SiC surface structure and compositions, respectively. Optical emission spectroscopy (OES) was used to measure the relative concentration of F radicals in the plasma. It was found that the roughness of the etched SiC surface and the etching rate are directly related to the power of low-frequency (LF) source. At lower LF power, a smaller surface roughness and a lower etching rate are obtained due to weak bombardment of low energy ions on the SiC wafers. At higher LF power the etching rate can be efficiently increased, but the surface roughness increases too. Compared with other plasma dry etching methods, the DF-CCP can effectively inhibit C x F y films’ deposition, and reduce surface residues.
  • Related Articles

    [1]Hongyue LI (李红月), Xingwei WU (吴兴伟), Cong LI (李聪), Yong WANG (王勇), Ding WU (吴鼎), Jiamin LIU (刘佳敏), Chunlei FENG (冯春雷), Hongbin DING (丁洪斌). Study of spatial and temporal evolution of Ar and F atoms in SF6/Ar microsecond pulsed discharge by optical emission spectroscopy[J]. Plasma Science and Technology, 2019, 21(7): 74008-074008. DOI: 10.1088/2058-6272/ab0c46
    [2]Yan WANG (王艳), Zhimin LIU (刘智民), Lizhen LIANG (梁立振), Chundong HU (胡纯栋). Preliminary results of optical emission spectroscopy by line ratio method in the RF negative ion source at ASIPP[J]. Plasma Science and Technology, 2019, 21(4): 45601-045601. DOI: 10.1088/2058-6272/aaf592
    [3]Xiang HE (何湘), Chong LIU (刘冲), Yachun ZHANG (张亚春), Jianping CHEN (陈建平), Yudong CHEN (陈玉东), Xiaojun ZENG (曾小军), Bingyan CHEN (陈秉岩), Jiaxin PANG (庞佳鑫), Yibing WANG (王一兵). Diagnostic of capacitively coupled radio frequency plasma from electrical discharge characteristics: comparison with optical emission spectroscopy and fluid model simulation[J]. Plasma Science and Technology, 2018, 20(2): 24005-024005. DOI: 10.1088/2058-6272/aa9a31
    [4]LAN Hui (兰慧), WANG Xinbing (王新兵), ZUO Duluo (左都罗). Time-Resolved Optical Emission Spectroscopy Diagnosis of CO2 Laser-Produced SnO2 Plasma[J]. Plasma Science and Technology, 2016, 18(9): 902-906. DOI: 10.1088/1009-0630/18/9/05
    [5]Panagiotis SVARNAS. Vibrational Temperature of Excited Nitrogen Molecules Detected in a 13.56 MHz Electrical Discharge by Sheath-Side Optical Emission Spectroscopy[J]. Plasma Science and Technology, 2013, 15(9): 891-895. DOI: 10.1088/1009-0630/15/9/11
    [6]LIU Wenyao (刘文耀), ZHU Aimin (朱爱民), Li Xiaosong (李小松), ZHAO Guoli (赵国利), et al.. Determination of Plasma Parameters in a Dual-Frequency Capacitively Coupled CF 4 Plasma Using Optical Emission Spectroscopy[J]. Plasma Science and Technology, 2013, 15(9): 885-890. DOI: 10.1088/1009-0630/15/9/10
    [7]YU Yiqing(虞一青), XIN Yu(辛煜), LU Wenqi(陆文琪), NING Zhaoyuan(宁兆元). Abnormal Enhancement of N2+ Emission Induced by Lower Frequencies in N2 Dual-Frequency Capacitively Coupled Plasmas[J]. Plasma Science and Technology, 2012, 14(3): 222-226. DOI: 10.1088/1009-0630/14/3/07
    [8]YU Yiqing(虞一青), XIN Yu(辛煜), LU Wenqi(陆文琪), NING Zhaoyuan(宁兆元). Investigation of Capacitively Coupled Argon Plasma Driven by Dual-Frequency with Different Frequency Configurations[J]. Plasma Science and Technology, 2011, 13(5): 571-574.
    [9]WU Jing (吴静), ZHANG Pengyun (张鹏云), SUN Jizhong (孙继忠), YAO Lieming (姚列明), DUAN Xuru(段旭如). Diagnostics of Parameters by Optical Emission Spectroscopy and Langmuir Probe in Mixtures (SiH4/C2H4/Ar) Ratio-Frequency Discharge[J]. Plasma Science and Technology, 2011, 13(5): 561-566.
    [10]ZHAO Guoli, XU Yong, SHANG Jianping, LIU Wenyao, ZHU Aimin, WANG Younian. Plasma Uniformity in a Dual Frequency Capacitively Coupled Plasma Reactor Measured by Optical Emission Spectroscopy[J]. Plasma Science and Technology, 2011, 13(1): 61-67.

Catalog

    Article views (288) PDF downloads (1739) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return