Advanced Search+
Yadong HUANG (黄亚冬), Benmou ZHOU (周本谋). Active control of noise amplification in the flow over a square leading-edge flat plate utilizing DBD plasma actuator[J]. Plasma Science and Technology, 2018, 20(5): 54021-054021. DOI: 10.1088/2058-6272/aab5bb
Citation: Yadong HUANG (黄亚冬), Benmou ZHOU (周本谋). Active control of noise amplification in the flow over a square leading-edge flat plate utilizing DBD plasma actuator[J]. Plasma Science and Technology, 2018, 20(5): 54021-054021. DOI: 10.1088/2058-6272/aab5bb

Active control of noise amplification in the flow over a square leading-edge flat plate utilizing DBD plasma actuator

Funds: This work has been funded by the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20133219110039).
More Information
  • Received Date: October 29, 2017
  • Perturbation is generally considered as the flow noise, and its energy can gain transient growth in the separation bubble. The amplified perturbations may cause unstable Kelvin–Helmohltz vortices which induce the three-dimensional transition. Active control of noise amplification via dielectric barrier discharge plasma actuator in the flow over a square leading-edge flat plate is numerically studied. The actuator is installed near the plate leading-edge where the separation bubble is formed. The maximum energy amplification of perturbations is positively correlated with the separation bubble scale which decreases with the increasing control parameters. As the magnitude of noise amplification is reduced, the laminar-turbulent transition is successfully suppressed.
  • [1]
    Huerre P and Monkewitz P A 1990 Annu. Rev. Fluid Mech. 22 473
    [2]
    He W et al 2017 J. Fluid Mech. 811 701
    [3]
    Pr?bsting S and Yarusevych S 2015 J. Fluid Mech. 780 167
    [4]
    Pr?bsting S, Scarano F and Morris S C 2015 J. Fluid Mech. 780 407
    [5]
    Jacquin L et al 2005 C. R. Phys. 6 399
    [6]
    Verma A, Jang H and Mahesh K 2012 J. Fluid Mech. 704 61
    [7]
    Grif?th M D et al 2010 J. Fluid Mech. 655 504
    [8]
    Blackburn H M, Sherwin S J and Barkley D 2008 J. Fluid Mech. 607 267
    [9]
    Sasaki K and Kiya M 1991 J. Fluids Eng. 113 405
    [10]
    Thompson M C 2012 J. Fluid Mech. 698 335
    [11]
    Sipp D and Schmid P J 2016 Appl. Mech. Rev. 68 020801
    [12]
    Mao X 2015 J. Fluid Mech. 771 229
    [13]
    Roy S, Singh K P and Gaitonde D V 2006 Appl. Phys. Lett. 88 121501
    [14]
    Riherd M and Roy S 2013 J. Appl. Phys. 114 083303
    [15]
    Marxen O et al 2015 Phys. Fluids 27 024107
    [16]
    Albrecht T et al 2013 Eur. Phys. J.-Spec. Top. 220 275
    [17]
    Cierpka C, Weier T and Gerbeth G 2010 Phys. Fluids 22 075109
    [18]
    Cattafesta L N III and Sheplak M 2011 Annu. Rev. Fluid Mech. 43 247
    [19]
    Suzen Y B et al 2005 Numerical Simulations of PIasma Based Flow Control Applications Proc. 35th Fluid Dynamics Conference and Exhibit (AIAA) vol 4633(Toronto, Canada) (https://doi.org/10.2514/6.2005-4633)
    [20]
    Suzen Y B and Huang P G 2006 Simulations of Flow Separation Control using Plasma Actuators Proc. 44th AIAA Aerospace Sciences Meeting and Exhibit (Reno, NV) (https://doi.org/10.2514/6.2006-877)
    [21]
    Karniadakis G E and Sherwin S 2005 Spectral/hp Element Methods for Computational Fluid Dynamics (New York: Oxford University Press)
    [22]
    Pouryousse? S G, Mirzaei M and Hajipour M 2015 Acta Mech. 226 1153
    [23]
    Karniadakis G E, Israeli M and Orszag S A 1991 J. Comput. Phys. 97 414
    [24]
    Chomaz J M 2005 Annu. Rev. Fluid Mech. 37 357
    [25]
    Schmid P J 2007 Annu. Rev. Fluid Mech. 39 129
    [26]
    Luchini P and Bottaro A 2014 Annu. Rev. Fluid Mech. 46 493
    [27]
    Friedman B and Carter T A 2014 Phys. Rev. Lett. 113 025003
    [28]
    Barkley D, Blackburn H M and Sherwin S J 2008 Int. J. Numer. Methods Fluids 57 1435
    [29]
    Marquillie M and Ehrenstein U W E 2003 J. Fluid Mech. 490 169
    [30]
    Chaurasia H K and Thompson M C 2011 J. Fluid Mech. 681 411
    [31]
    Jeong J and Hussain F 1995 J. Fluid Mech. 285 69
  • Related Articles

    [1]Chengcheng DENG, Zixi LIU, Tianyang XIA, Yanjun LIU, Pengcheng LI, Feifei LONG, Xiang GAO, Shouxin WANG, Guoqiang LI, Haiqing LIU, Qing ZANG, Jiuying LI, Kangning YANG, Mingfu WU, Xiaoyu YIN, Hong LI, Jinlin XIE, Tao LAN, Wenzhe MAO, Adi LIU, Chu ZHOU, Weixing DING, Ge ZHUANG, Wandong LIU, the EAST Team. Comparison of transport coefficients before and after density pump-out induced by resonant magnetic perturbation using a BOUT++ six-field model on the EAST tokamak[J]. Plasma Science and Technology, 2024, 26(6): 065103. DOI: 10.1088/2058-6272/ad273c
    [2]Liangkang DONG, Shaoyong CHEN, Maolin MOU, Yang LUO, Chenchen QIN, Changjian TANG. Investigation on the roles of equilibrium toroidal rotation during edge-localized mode mitigated by resonant magnetic perturbations[J]. Plasma Science and Technology, 2024, 26(1): 015102. DOI: 10.1088/2058-6272/ad0d4d
    [3]Zhonghe JIANG, Yonghua DING, Bo RAO, Nengchao WANG, Yangbo LI, Jie HUANG. A brief review of the development and optimization of the three-dimensional magnetic configuration system in the J-TEXT tokamak[J]. Plasma Science and Technology, 2022, 24(12): 124014. DOI: 10.1088/2058-6272/aca18d
    [4]Feiyue MAO, Nengchao WANG, Zhuo HUANG, Zhengkang REN, Song ZHOU, Chengshuo SHEN, Xiaoyi ZHANG, Ying HE, Qi ZHANG, Ruo JIA, Chuanxu ZHAO, Yangbo LI, Bo HU, Da LI, Abba Alhaji BALA, Zhipeng CHEN, Zhongyong CHEN, Zhoujun YANG, Yunfeng LIANG, Yonghua DING, Yuan PAN, J-TEXT Team. Study of the spectrum effect on the threshold of resonant magnetic perturbation penetration on J-TEXT[J]. Plasma Science and Technology, 2022, 24(12): 124002. DOI: 10.1088/2058-6272/ac9f2e
    [5]Zhengxiong WANG, Weikang TANG, Lai WEI. A brief review: effects of resonant magnetic perturbation on classical and neoclassical tearing modes in tokamaks[J]. Plasma Science and Technology, 2022, 24(3): 033001. DOI: 10.1088/2058-6272/ac4692
    [6]Jie HUANG (黄杰), Yasuhiro SUZUKI (铃木康浩), Yunfeng LIANG (梁云峰), Manni JIA (贾曼妮), Youwen SUN (孙有文), Nan CHU (楚南), Jichan XU (许吉禅), Muquan WU (吴木泉), EAST team. Magnetic field topology modeling under resonant magnetic perturbations on EAST[J]. Plasma Science and Technology, 2019, 21(6): 65105-065105. DOI: 10.1088/2058-6272/ab0d35
    [7]Weikang TANG (汤炜康), Lai WEI (魏来), Zhengxiong WANG (王正汹), Jialei WANG (王佳磊), Tong LIU (刘桐), Shu ZHENG (郑殊). Effects of resonant magnetic perturbation on locked mode of neoclassical tearing modes[J]. Plasma Science and Technology, 2019, 21(6): 65103-065103. DOI: 10.1088/2058-6272/ab0a18
    [8]Guo XU (徐国), Bo RAO (饶波), Yonghua DING (丁永华), Mao LI (李茂), Da LI (李达), Ruo JIA (贾若), Minxiong YAN (严民雄), Xinke JI (吉新科), Nengchao WANG (王能超), Zhuo HUANG (黄卓), Daojing GUO (郭道靖), Lai PENG (彭莱). Power supply for generating frequency-variable resonant magnetic perturbations on the J-TEXT tokamak[J]. Plasma Science and Technology, 2018, 20(8): 85601-085601. DOI: 10.1088/2058-6272/aabd2f
    [9]LIN Zhihong (林志宏), S. ETHIER, T. S. HAHM, W. M. TANG. Verification of Gyrokinetic Particle Simulation of Device Size Scaling of Turbulent Transport[J]. Plasma Science and Technology, 2012, 14(12): 1125-1126. DOI: 10.1088/1009-0630/14/12/17
    [10]HAO Changduana(郝长端), ZHANG Minga(张明), DING Yonghua(丁永华), RAO Boa(饶波), CEN Yishuna(岑义顺), ZHUANG Ge(庄革). Stress and Thermal Analysis of the In-Vessel Resonant Magnetic Perturbation Coils on the J-TEXT Tokamak[J]. Plasma Science and Technology, 2012, 14(1): 83-88. DOI: 10.1088/1009-0630/14/1/18
  • Cited by

    Periodical cited type(4)

    1. Liu, S.-J., Wang, F., Hu, D. et al. Transport characteristic evaluation of runaway electrons in an ITER disruption simulation. Plasma Physics and Controlled Fusion, 2024, 66(8): 085016. DOI:10.1088/1361-6587/ad5c9a
    2. Long, T., Diamond, P., Ke, R. et al. The role of shear flow collapse and enhanced turbulence spreading in edge cooling approaching the density limit. Nuclear Fusion, 2024, 64(6): 066011. DOI:10.1088/1741-4326/ad3e15
    3. Liu, F.X., Yan, W., Chen, Z.Y. et al. Effect of 2/1 tearing mode on radiation asymmetry during disruptions on J-TEXT. Fusion Engineering and Design, 2024. DOI:10.1016/j.fusengdes.2024.114152
    4. Li, K., Li, Z., Jiang, Z. Simulation on the suppression effect of external passive field on runaway electrons on J-TEXT. 2023. DOI:10.1109/CIYCEE59789.2023.10401841

    Other cited types(0)

Catalog

    Article views (270) PDF downloads (362) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return