Advanced Search+
Cailong FU (付彩龙), Qi WANG (王奇), Hongbin DING (丁洪斌). Numerical simulation of laser ablation of molybdenum target for laser-induced breakdown spectroscopic application[J]. Plasma Science and Technology, 2018, 20(8): 85501-085501. DOI: 10.1088/2058-6272/aab661
Citation: Cailong FU (付彩龙), Qi WANG (王奇), Hongbin DING (丁洪斌). Numerical simulation of laser ablation of molybdenum target for laser-induced breakdown spectroscopic application[J]. Plasma Science and Technology, 2018, 20(8): 85501-085501. DOI: 10.1088/2058-6272/aab661

Numerical simulation of laser ablation of molybdenum target for laser-induced breakdown spectroscopic application

Funds: This work was supported by National Magnetic Confinement Fusion Science Program of China (No. 2013GB109005), National Natural Science Foundation of China (Nos. 11475039, 11605023).
More Information
  • Received Date: February 05, 2018
  • Laser-induced breakdown spectroscopy has been recognized as a significant tool for element diagnostics in plasma–wall interaction. In this work, a one-dimensional numerical model is developed to simulate the laser ablation processes of a molybdenum (Mo) target in vacuum conditions. The thermal process of the interaction between the ns-pulse laser with wavelength of 1064 nm and the Mo target is described by the heat conduction equation. The plasma plume generation and expansion are described by Euler equations, in which the conservation of mass density, momentum and energy are included. Saha equations are used to describe the local thermal equilibrium of electrons, Mo atoms, and Plasma shielding and emission are all considered in this model. The mainly numerical results are divided into three parts, as listed below. Firstly, the rule of the plasma shielding effect varying with laser intensity is demonstrated quantitatively and fitted with the Nelder function. Secondly, the key parameters of plasma plume, such as the number density of species, the propagation velocity and the temperature, are all calculated in this model. The results indicate that the propagation velocity of the plume center increased with time in a general trend, however, one valley value appeared at about 20 ns due to the pressure gradient near the target surface leading to negative plasma velocity. Thirdly, the persistent lines of a Mo atom in the wavelength range from 300 nm to 600 nm are selected and the spectrum is calculated. Moreover, the temporal evolutions of Mo's spectral lines at wavelength of 550.6494 nm, 553.3031 nm and 557.0444 nm are given and the results are compared with experimental data in this work.
  • [1]
    Rubel M, Wienhold P and Hildebrandt D 2001 J. Nucl. Mater. 290-293 473
    [2]
    Wang L et al 2014 Nucl. Fusion 54 114002
    [3]
    Philipps V et al 2013 Nucl. Fusion 53 093002
    [4]
    Mercadier L et al 2011 J. Nucl. Mater 414 485
    [5]
    Gierse N et al 2011 J. Nucl. Mater 415 S1195
    [6]
    Xiao Q et al 2013 Fusion Eng. Des. 88 1813
    [7]
    Hai R et al 2013 J. Nucl. Mater. 436 118
    [8]
    Coad J P et al 2001 J. Nucl. Mater. 290-293 224
    [9]
    Brech F and Cross L 1962 Appl. Spectrosc. 16 59
    [10]
    Caneve L et al 2006 Appl. Phys. A 85 151
    [11]
    Wang Z et al 2014 Front. Phys. 9 419
    [12]
    Farid N et al 2013 J. Nucl. Mater. 433 80
    [13]
    Hai R et al 2013 Spectrochim. Acta. Part B At. Spectrosc. 87 147
    [14]
    Hai R et al 2013 J. Nucl. Mater 438 S1168
    [15]
    Farid N et al 2013 J. Nucl. Mater 438 183
    [16]
    Pandhija S et al 2010 Appl. Phys. B 98 231
    [17]
    Schweer B et al 2009 Phys. Scr. 2009 014008
    [18]
    Farid N et al 2014 Nucl. Fusion 54 012002
    [19]
    Zhao D Y et al 2014 Plasma Sci. Technol. 16 149
    [20]
    Farid N et al 2014 J. Appl. Phys. 115 033107
    [21]
    Farid N et al 2013 Appl. Phys. Lett. 103 191112
    [22]
    Vijayalakshmi S et al 1998 Appl. Surf. Sci. 127-129 378
    [23]
    Becker M F et al 1998 Nanostruct. Mater 10 853
    [24]
    Winefordner J D et al 2000 J. Anal. At. Spectrom. 15 1161
    [25]
    Loesel F H et al 1998 Appl. Phys. B 66 121
    [26]
    Zhigilei L V, Lin Z B and Ivanov D S 2009 J. Phys. Chem. C 113 11892
    [27]
    Bogaerts A et al 2003 Spectrochim. Acta Part B At. Spectrosc. 58 1867
    [28]
    Rezaei F and Tavassoli S H 2012 Spectrochim. Acta Part B At. Spectrosc. 78 29
    [29]
    Ivanov D S and Zhigilei L V 2003 Phys. Rev. B 68 064114
    [30]
    Oderji H Y et al 2016 Spectrochim. Acta Part B At. Spectrosc. 122 1
    [31]
    Stafe M 2012 J. Appl. Phys. 112 123112
    [32]
    Aghaei M, Mehrabian S and Tavassoli S H 2008 J. Appl. Phys. 104 053303
    [33]
    Li C et al 2015 Plasma Sci. Technol. 17 638
    [34]
    Liu P et al 2017 Fusion Eng. Des 118 98
    [35]
    Svendsen W, Ellegaard O and Schou J 1996 Appl. Phys. A 63 247
    [36]
    Bhattacharya D, Singh R K and Holloway P H 1991 J. Appl. Phys. 70 5433
    [37]
    Ho J R, Grigoropoulos C P and Humphrey J A C 1995 J. Appl. Phys. 78 4696
    [38]
    Balazs L, Gijbels R and Vertes A 1991 Anal. Chem. 63 314
    [39]
    Alonso-Medina A 2008 Spectrochim. Acta Part B At. Spectrosc. 63 598
  • Related Articles

    [1]Runhui WU (邬润辉), Song CHAI (柴忪), Jiaqi LIU (刘佳琪), Shiyuan CONG (从拾源), Gang MENG (孟刚). Numerical simulation and analysis of lithium plasma during low-pressure DC arc discharge[J]. Plasma Science and Technology, 2019, 21(4): 44002-044002. DOI: 10.1088/2058-6272/aafbc7
    [2]Jun DENG (邓俊), Liming HE (何立明), Xingjian LIU (刘兴建), Yi CHEN (陈一). Numerical simulation of plasma-assisted combustion of methane-air mixtures in combustion chamber[J]. Plasma Science and Technology, 2018, 20(12): 125502. DOI: 10.1088/2058-6272/aacdef
    [3]Guobao FENG (封国宝), Wanzhao CUI (崔万照), Lu LIU (刘璐). Dynamic characteristics of charging effects on the dielectric constant due to E-beam irradiation: a numerical simulation[J]. Plasma Science and Technology, 2018, 20(3): 35001-035001. DOI: 10.1088/2058-6272/aa9d0d
    [4]Gui LI (李桂), Muyang QIAN (钱沐杨), Sanqiu LIU (刘三秋), Huaying CHEN (陈华英), Chunsheng REN (任春生), Dezhen WANG (王德真). A numerical simulation study on active species production in dense methane-air plasma discharge[J]. Plasma Science and Technology, 2018, 20(1): 14004-014004. DOI: 10.1088/2058-6272/aa8f3c
    [5]R. KHOSHKHOO, A. JAHANGIRIAN. Numerical Simulation of Stall Flow Control Using a DBD Plasma Actuator in Pulse Mode[J]. Plasma Science and Technology, 2016, 18(9): 933-942. DOI: 10.1088/1009-0630/18/9/10
    [6]ZHUANG Juan (庄娟), SUN Jizhong (孙继忠), SANG Chaofeng (桑超峰), WANG Dezhen (王德真). Numerical Simulation of VHF E®ects on Densities of Important Species for Silicon Film Deposition at Atmospheric Pressure[J]. Plasma Science and Technology, 2012, 14(12): 1106-1109. DOI: 10.1088/1009-0630/14/12/13
    [7]YANG Fei (杨飞), RONG Mingzhe (荣命哲), WU Yi (吴翊), SUN Hao (孙昊), MA Ruiguang (马瑞光), NIU Chunping (纽春萍). Numerical Simulation of the Eddy Current Effects in the Arc Splitting Process[J]. Plasma Science and Technology, 2012, 14(11): 974-979. DOI: 10.1088/1009-0630/14/11/05
    [8]ZHANG Ling(张玲), WANG Lijun (王立军), JIA Shenli(贾申利), YANG Dingge(杨鼎革), SHI Zongqian(史宗谦). Numerical simulation of high-current vacuum arc with consideration of anode vapor[J]. Plasma Science and Technology, 2012, 14(4): 285-292. DOI: 10.1088/1009-0630/14/4/04
    [9]DENG Yongfeng(邓永锋), TAN Chang(谭畅), HAN Xianwei(韩先伟), TAN Yonghua(谭永华). Numerical Simulation of the Self-Heating Effect Induced by Electron Beam Plasma in Atmosphere[J]. Plasma Science and Technology, 2012, 14(2): 89-93. DOI: 10.1088/1009-0630/14/2/01
    [10]WU Junhui, WANG Xiaohua, MA Zhiying, RONG Mingzhe, YAN Jing. Numerical Simulation of Gas Flow during Arcing Process for 252kV Puffer Circuit Breakers[J]. Plasma Science and Technology, 2011, 13(6): 730-734.

Catalog

    Article views (218) PDF downloads (324) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return