Advanced Search+
Cailong FU (付彩龙), Qi WANG (王奇), Hongbin DING (丁洪斌). Numerical simulation of laser ablation of molybdenum target for laser-induced breakdown spectroscopic application[J]. Plasma Science and Technology, 2018, 20(8): 85501-085501. DOI: 10.1088/2058-6272/aab661
Citation: Cailong FU (付彩龙), Qi WANG (王奇), Hongbin DING (丁洪斌). Numerical simulation of laser ablation of molybdenum target for laser-induced breakdown spectroscopic application[J]. Plasma Science and Technology, 2018, 20(8): 85501-085501. DOI: 10.1088/2058-6272/aab661

Numerical simulation of laser ablation of molybdenum target for laser-induced breakdown spectroscopic application

Funds: This work was supported by National Magnetic Confinement Fusion Science Program of China (No. 2013GB109005), National Natural Science Foundation of China (Nos. 11475039, 11605023).
More Information
  • Received Date: February 05, 2018
  • Laser-induced breakdown spectroscopy has been recognized as a significant tool for element diagnostics in plasma–wall interaction. In this work, a one-dimensional numerical model is developed to simulate the laser ablation processes of a molybdenum (Mo) target in vacuum conditions. The thermal process of the interaction between the ns-pulse laser with wavelength of 1064 nm and the Mo target is described by the heat conduction equation. The plasma plume generation and expansion are described by Euler equations, in which the conservation of mass density, momentum and energy are included. Saha equations are used to describe the local thermal equilibrium of electrons, Mo atoms, and Plasma shielding and emission are all considered in this model. The mainly numerical results are divided into three parts, as listed below. Firstly, the rule of the plasma shielding effect varying with laser intensity is demonstrated quantitatively and fitted with the Nelder function. Secondly, the key parameters of plasma plume, such as the number density of species, the propagation velocity and the temperature, are all calculated in this model. The results indicate that the propagation velocity of the plume center increased with time in a general trend, however, one valley value appeared at about 20 ns due to the pressure gradient near the target surface leading to negative plasma velocity. Thirdly, the persistent lines of a Mo atom in the wavelength range from 300 nm to 600 nm are selected and the spectrum is calculated. Moreover, the temporal evolutions of Mo's spectral lines at wavelength of 550.6494 nm, 553.3031 nm and 557.0444 nm are given and the results are compared with experimental data in this work.
  • [1]
    Rubel M, Wienhold P and Hildebrandt D 2001 J. Nucl. Mater. 290-293 473
    [2]
    Wang L et al 2014 Nucl. Fusion 54 114002
    [3]
    Philipps V et al 2013 Nucl. Fusion 53 093002
    [4]
    Mercadier L et al 2011 J. Nucl. Mater 414 485
    [5]
    Gierse N et al 2011 J. Nucl. Mater 415 S1195
    [6]
    Xiao Q et al 2013 Fusion Eng. Des. 88 1813
    [7]
    Hai R et al 2013 J. Nucl. Mater. 436 118
    [8]
    Coad J P et al 2001 J. Nucl. Mater. 290-293 224
    [9]
    Brech F and Cross L 1962 Appl. Spectrosc. 16 59
    [10]
    Caneve L et al 2006 Appl. Phys. A 85 151
    [11]
    Wang Z et al 2014 Front. Phys. 9 419
    [12]
    Farid N et al 2013 J. Nucl. Mater. 433 80
    [13]
    Hai R et al 2013 Spectrochim. Acta. Part B At. Spectrosc. 87 147
    [14]
    Hai R et al 2013 J. Nucl. Mater 438 S1168
    [15]
    Farid N et al 2013 J. Nucl. Mater 438 183
    [16]
    Pandhija S et al 2010 Appl. Phys. B 98 231
    [17]
    Schweer B et al 2009 Phys. Scr. 2009 014008
    [18]
    Farid N et al 2014 Nucl. Fusion 54 012002
    [19]
    Zhao D Y et al 2014 Plasma Sci. Technol. 16 149
    [20]
    Farid N et al 2014 J. Appl. Phys. 115 033107
    [21]
    Farid N et al 2013 Appl. Phys. Lett. 103 191112
    [22]
    Vijayalakshmi S et al 1998 Appl. Surf. Sci. 127-129 378
    [23]
    Becker M F et al 1998 Nanostruct. Mater 10 853
    [24]
    Winefordner J D et al 2000 J. Anal. At. Spectrom. 15 1161
    [25]
    Loesel F H et al 1998 Appl. Phys. B 66 121
    [26]
    Zhigilei L V, Lin Z B and Ivanov D S 2009 J. Phys. Chem. C 113 11892
    [27]
    Bogaerts A et al 2003 Spectrochim. Acta Part B At. Spectrosc. 58 1867
    [28]
    Rezaei F and Tavassoli S H 2012 Spectrochim. Acta Part B At. Spectrosc. 78 29
    [29]
    Ivanov D S and Zhigilei L V 2003 Phys. Rev. B 68 064114
    [30]
    Oderji H Y et al 2016 Spectrochim. Acta Part B At. Spectrosc. 122 1
    [31]
    Stafe M 2012 J. Appl. Phys. 112 123112
    [32]
    Aghaei M, Mehrabian S and Tavassoli S H 2008 J. Appl. Phys. 104 053303
    [33]
    Li C et al 2015 Plasma Sci. Technol. 17 638
    [34]
    Liu P et al 2017 Fusion Eng. Des 118 98
    [35]
    Svendsen W, Ellegaard O and Schou J 1996 Appl. Phys. A 63 247
    [36]
    Bhattacharya D, Singh R K and Holloway P H 1991 J. Appl. Phys. 70 5433
    [37]
    Ho J R, Grigoropoulos C P and Humphrey J A C 1995 J. Appl. Phys. 78 4696
    [38]
    Balazs L, Gijbels R and Vertes A 1991 Anal. Chem. 63 314
    [39]
    Alonso-Medina A 2008 Spectrochim. Acta Part B At. Spectrosc. 63 598

Catalog

    Article views (218) PDF downloads (324) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return