Advanced Search+
Jun DENG (邓俊), Liming HE (何立明), Xingjian LIU (刘兴建), Yi CHEN (陈一). Numerical simulation of plasma-assisted combustion of methane-air mixtures in combustion chamber[J]. Plasma Science and Technology, 2018, 20(12): 125502. DOI: 10.1088/2058-6272/aacdef
Citation: Jun DENG (邓俊), Liming HE (何立明), Xingjian LIU (刘兴建), Yi CHEN (陈一). Numerical simulation of plasma-assisted combustion of methane-air mixtures in combustion chamber[J]. Plasma Science and Technology, 2018, 20(12): 125502. DOI: 10.1088/2058-6272/aacdef

Numerical simulation of plasma-assisted combustion of methane-air mixtures in combustion chamber

Funds: This work is supported by National Natural Science Foundation of China (No. 51436008).
More Information
  • Received Date: February 05, 2018
  • A two-dimensional mathematical model was developed to investigate the effects of dielectric barrier discharge (DBD) plasma on CH4-air mixtures combustion at atmospheric pressure. Considering the physical and chemical processes of plasma-assisted combustion (PAC), plasma discharge, heat transfer and turbulent were simultaneously coupled into simulation of PAC. This coupling model consists of DBD kinetic model and methane combustion model. By comparing simulations and the original reference’s results, a high-accuracy of this model was validated. In addition, the effects of PAC actuation parameters on combustion characteristics were studied. Numerical simulations show that with an inlet airflow velocity of 10 ms -1, a CH4-air mixtures’ equivalence ratio of 0.5, an applied voltage of 10 kV, a frequency of 1200 kHz, compared to conventional combustion (CC), the highest flame temperature rises by 32 K; outlet temperature distribution coefficient drops by 2.3%; the maximum net reaction rate of CH4 and H2O increase by 11.22% and 12.80% respectively; the maximum CO emission index decreases by 14.61%; the mixing region turbulence mixing time reduces by 89 ms.
  • [1]
    Starik A M et al 2015 Phil. Trans. R. Soc. A 373 20140341
    [2]
    Starikovskiy A and Aleksandrov N 2013 Prog. Energy Combust. Sci. 39 61
    [3]
    Starikovskiy A 2015 Phil. Trans. R. Soc. A 373 20150074
    [4]
    Bityurin V A et al 2004 Numerical study of plasma assisted mixing and combustion in non-premixed supersonic flows 42nd AIAA Aerospace Sciences Meeting and Exhibit (Reno, NV: AIAA) 2004 (https://doi.org/10.2514/6.2004-1017)
    [5]
    Uddi M 2008 Non-equilibrium kinetic studies of repetitively pulsed nanosecond discharge plasma assisted combustion PhD Thesis The Ohio State University, OH
    [6]
    Adamovich I V and Lempert W R 2015 Plasma Phys. Control. Fusion 57 014001
    [7]
    Sun W T et al 2012 Combust. Flame 159 221
    [8]
    Starikovskaia S M 2014 J. Phys. D: Appl. Phys. 47 353001
    [9]
    Ebato S, Ogino Y and Ohnishi N 2010 Numerical analysis of momentum transfer process in DBD plasma actuator 41st Plasmadynamics and Lasers Conf. (Chicago, IL: AIAA) (https://doi.org/10.2514/6.2010-4635)
    [10]
    Ombrello T et al 2010 Combust. Flame 157 1906
    [11]
    Ombrello T et al 2010 Combust. Flame 157 1916
    [12]
    Kim W et al 2006 Flame stabilization enhancement and NOx production using ultra short repetitively pulsed plasma discharges 44th AIAA Aerospace Sciences Meeting and Exhibit (Reno, NV: AIAA) (https://doi.org/10.2514/ 6.2006-560)
    [13]
    Mcllroy A 2006 Basic Energy Needs for Clean and Efficient Combustion of 21st Century Transportation Fuels (United States) (https://doi.org/10.2175/935428)
    [14]
    Bak M S and Cappelli M A 2013 J. Appl. Phys. 113 113301
    [15]
    Aleksandrov N L, Kindysheva S V and Starikovskiy A Y 2011 Simulation of active species production in nonequilibrium discharge plasmas 42nd AIAA Plasmadynamics and Lasers Conf. (Honolulu, HI: AIAA) 2011 (https://doi.org/10. 2514/6.2011-3447)
    [16]
    Takana H, Tanaka Y and Nishiyama H 2012 EPL 97 25001
    [17]
    Ju Y G and Sun W T 2015 Prog. Energy Combust. Sci. 48 21
    [18]
    Starikovskaia S M and Starikovskii A Y 2010 Plasma assisted ignition and combustion Handbook of Combustion (Weinheim: VCH Wiley)
    [19]
    Takao Y et al 2011 AIP Conf. Proc. 1333 1051
    [20]
    Chung T H and Yoon H S 1995 J. Appl. Phys. 78 6441
    [21]
    Kim H Y, Kwon D C and Yoon N S 2006 Journal of the Korean Physical Society 49 1967
    [22]
    Jayaraman B and Shyy W 2008 Prog. Aerosp. Sci. 44 139
    [23]
    Kortshagen U and Heil B G 1999 IEEE Trans. Plasma Sci. 27 1297
    [24]
    Phelps A V and Pitchford L C 1985 Phys. Rev. A 31 2932
    [25]
    Ionin A A et al 2007 J. Phys. D: Appl. Phys. 40 25
    [26]
    Motlagh S and Moore J H 1998 J. Chem. Phys. 109 432
    [27]
    Yin Z Y et al 2013 Combust. Flame 160 1594
    [28]
    Uddi M et al 2009 Proc. Combust. Inst. 32 929
    [29]
    Serbin S et al 2011 Improvement of the gas turbine plasma assisted combustor characteristics 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition (Orlando, FL: AIAA) 2011 (https:// doi.org/10.2514/6.2011-61)
    [30]
    Fluent 2006 Fluent 6.3 User’s Guide (Lebanon, NH: Fluent Inc.)
    [31]
    Starikovskaia S M 2006 J. Phys. D: Appl. Phys. 39 265
    [32]
    Sankaran R et al 2007 Proc. Combust. Inst. 31 1291
    [33]
    Bibrzycki J and Poinsot T 2010 Reduced chemical kinetic mechanisms for methane combustion in O 2 /N 2 and O 2 /CO 2 atmosphere Working note ECCOMET WN/CFD/10/17 (France: CERFACS)
    [34]
    Turns S R 2000 An Introduction to Combustion: Concepts and Applications (New York: McGraw-hill)
    [35]
    Spalding D B 1971 Mixing and chemical reaction in steady confined turbulent flames (Pittsburgh, PA: The Combustion Institute) 1971 (https://doi.org/10.1016/S0082-0784(71) 80067-X)
  • Related Articles

    [1]Runhui WU (邬润辉), Song CHAI (柴忪), Jiaqi LIU (刘佳琪), Shiyuan CONG (从拾源), Gang MENG (孟刚). Numerical simulation and analysis of lithium plasma during low-pressure DC arc discharge[J]. Plasma Science and Technology, 2019, 21(4): 44002-044002. DOI: 10.1088/2058-6272/aafbc7
    [2]Cailong FU (付彩龙), Qi WANG (王奇), Hongbin DING (丁洪斌). Numerical simulation of laser ablation of molybdenum target for laser-induced breakdown spectroscopic application[J]. Plasma Science and Technology, 2018, 20(8): 85501-085501. DOI: 10.1088/2058-6272/aab661
    [3]Guobao FENG (封国宝), Wanzhao CUI (崔万照), Lu LIU (刘璐). Dynamic characteristics of charging effects on the dielectric constant due to E-beam irradiation: a numerical simulation[J]. Plasma Science and Technology, 2018, 20(3): 35001-035001. DOI: 10.1088/2058-6272/aa9d0d
    [4]Hualei ZHANG (张华磊), Liming HE (何立明), Jinlu YU (于锦禄), Wentao QI (祁文涛), Gaocheng CHEN (陈高成). Investigation of flame structure in plasma-assisted turbulent premixed methane-air flame[J]. Plasma Science and Technology, 2018, 20(2): 24001-024001. DOI: 10.1088/2058-6272/aa9850
    [5]Gui LI (李桂), Muyang QIAN (钱沐杨), Sanqiu LIU (刘三秋), Huaying CHEN (陈华英), Chunsheng REN (任春生), Dezhen WANG (王德真). A numerical simulation study on active species production in dense methane-air plasma discharge[J]. Plasma Science and Technology, 2018, 20(1): 14004-014004. DOI: 10.1088/2058-6272/aa8f3c
    [6]R. KHOSHKHOO, A. JAHANGIRIAN. Numerical Simulation of Stall Flow Control Using a DBD Plasma Actuator in Pulse Mode[J]. Plasma Science and Technology, 2016, 18(9): 933-942. DOI: 10.1088/1009-0630/18/9/10
    [7]GAO Ling (高岭), ZHANG Bailing (张百灵), LI Yiwen (李益文), FAN Hao (樊昊), DUAN Chengduo (段成铎), WANG Yutian (王宇天). Experimental Study of MHD-Assisted Mixing and Combustion Under Low Pressure Conditions[J]. Plasma Science and Technology, 2016, 18(8): 855-859. DOI: 10.1088/1009-0630/18/8/11
    [8]ZHUANG Juan (庄娟), SUN Jizhong (孙继忠), SANG Chaofeng (桑超峰), WANG Dezhen (王德真). Numerical Simulation of VHF E®ects on Densities of Important Species for Silicon Film Deposition at Atmospheric Pressure[J]. Plasma Science and Technology, 2012, 14(12): 1106-1109. DOI: 10.1088/1009-0630/14/12/13
    [9]ZHANG Ling(张玲), WANG Lijun (王立军), JIA Shenli(贾申利), YANG Dingge(杨鼎革), SHI Zongqian(史宗谦). Numerical simulation of high-current vacuum arc with consideration of anode vapor[J]. Plasma Science and Technology, 2012, 14(4): 285-292. DOI: 10.1088/1009-0630/14/4/04
    [10]WU Junhui, WANG Xiaohua, MA Zhiying, RONG Mingzhe, YAN Jing. Numerical Simulation of Gas Flow during Arcing Process for 252kV Puffer Circuit Breakers[J]. Plasma Science and Technology, 2011, 13(6): 730-734.

Catalog

    Article views (183) PDF downloads (354) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return