Advanced Search+
Jun DENG (邓俊), Liming HE (何立明), Xingjian LIU (刘兴建), Yi CHEN (陈一). Numerical simulation of plasma-assisted combustion of methane-air mixtures in combustion chamber[J]. Plasma Science and Technology, 2018, 20(12): 125502. DOI: 10.1088/2058-6272/aacdef
Citation: Jun DENG (邓俊), Liming HE (何立明), Xingjian LIU (刘兴建), Yi CHEN (陈一). Numerical simulation of plasma-assisted combustion of methane-air mixtures in combustion chamber[J]. Plasma Science and Technology, 2018, 20(12): 125502. DOI: 10.1088/2058-6272/aacdef

Numerical simulation of plasma-assisted combustion of methane-air mixtures in combustion chamber

Funds: This work is supported by National Natural Science Foundation of China (No. 51436008).
More Information
  • Received Date: February 05, 2018
  • A two-dimensional mathematical model was developed to investigate the effects of dielectric barrier discharge (DBD) plasma on CH4-air mixtures combustion at atmospheric pressure. Considering the physical and chemical processes of plasma-assisted combustion (PAC), plasma discharge, heat transfer and turbulent were simultaneously coupled into simulation of PAC. This coupling model consists of DBD kinetic model and methane combustion model. By comparing simulations and the original reference’s results, a high-accuracy of this model was validated. In addition, the effects of PAC actuation parameters on combustion characteristics were studied. Numerical simulations show that with an inlet airflow velocity of 10 ms -1, a CH4-air mixtures’ equivalence ratio of 0.5, an applied voltage of 10 kV, a frequency of 1200 kHz, compared to conventional combustion (CC), the highest flame temperature rises by 32 K; outlet temperature distribution coefficient drops by 2.3%; the maximum net reaction rate of CH4 and H2O increase by 11.22% and 12.80% respectively; the maximum CO emission index decreases by 14.61%; the mixing region turbulence mixing time reduces by 89 ms.
  • [1]
    Starik A M et al 2015 Phil. Trans. R. Soc. A 373 20140341
    [2]
    Starikovskiy A and Aleksandrov N 2013 Prog. Energy Combust. Sci. 39 61
    [3]
    Starikovskiy A 2015 Phil. Trans. R. Soc. A 373 20150074
    [4]
    Bityurin V A et al 2004 Numerical study of plasma assisted mixing and combustion in non-premixed supersonic flows 42nd AIAA Aerospace Sciences Meeting and Exhibit (Reno, NV: AIAA) 2004 (https://doi.org/10.2514/6.2004-1017)
    [5]
    Uddi M 2008 Non-equilibrium kinetic studies of repetitively pulsed nanosecond discharge plasma assisted combustion PhD Thesis The Ohio State University, OH
    [6]
    Adamovich I V and Lempert W R 2015 Plasma Phys. Control. Fusion 57 014001
    [7]
    Sun W T et al 2012 Combust. Flame 159 221
    [8]
    Starikovskaia S M 2014 J. Phys. D: Appl. Phys. 47 353001
    [9]
    Ebato S, Ogino Y and Ohnishi N 2010 Numerical analysis of momentum transfer process in DBD plasma actuator 41st Plasmadynamics and Lasers Conf. (Chicago, IL: AIAA) (https://doi.org/10.2514/6.2010-4635)
    [10]
    Ombrello T et al 2010 Combust. Flame 157 1906
    [11]
    Ombrello T et al 2010 Combust. Flame 157 1916
    [12]
    Kim W et al 2006 Flame stabilization enhancement and NOx production using ultra short repetitively pulsed plasma discharges 44th AIAA Aerospace Sciences Meeting and Exhibit (Reno, NV: AIAA) (https://doi.org/10.2514/ 6.2006-560)
    [13]
    Mcllroy A 2006 Basic Energy Needs for Clean and Efficient Combustion of 21st Century Transportation Fuels (United States) (https://doi.org/10.2175/935428)
    [14]
    Bak M S and Cappelli M A 2013 J. Appl. Phys. 113 113301
    [15]
    Aleksandrov N L, Kindysheva S V and Starikovskiy A Y 2011 Simulation of active species production in nonequilibrium discharge plasmas 42nd AIAA Plasmadynamics and Lasers Conf. (Honolulu, HI: AIAA) 2011 (https://doi.org/10. 2514/6.2011-3447)
    [16]
    Takana H, Tanaka Y and Nishiyama H 2012 EPL 97 25001
    [17]
    Ju Y G and Sun W T 2015 Prog. Energy Combust. Sci. 48 21
    [18]
    Starikovskaia S M and Starikovskii A Y 2010 Plasma assisted ignition and combustion Handbook of Combustion (Weinheim: VCH Wiley)
    [19]
    Takao Y et al 2011 AIP Conf. Proc. 1333 1051
    [20]
    Chung T H and Yoon H S 1995 J. Appl. Phys. 78 6441
    [21]
    Kim H Y, Kwon D C and Yoon N S 2006 Journal of the Korean Physical Society 49 1967
    [22]
    Jayaraman B and Shyy W 2008 Prog. Aerosp. Sci. 44 139
    [23]
    Kortshagen U and Heil B G 1999 IEEE Trans. Plasma Sci. 27 1297
    [24]
    Phelps A V and Pitchford L C 1985 Phys. Rev. A 31 2932
    [25]
    Ionin A A et al 2007 J. Phys. D: Appl. Phys. 40 25
    [26]
    Motlagh S and Moore J H 1998 J. Chem. Phys. 109 432
    [27]
    Yin Z Y et al 2013 Combust. Flame 160 1594
    [28]
    Uddi M et al 2009 Proc. Combust. Inst. 32 929
    [29]
    Serbin S et al 2011 Improvement of the gas turbine plasma assisted combustor characteristics 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition (Orlando, FL: AIAA) 2011 (https:// doi.org/10.2514/6.2011-61)
    [30]
    Fluent 2006 Fluent 6.3 User’s Guide (Lebanon, NH: Fluent Inc.)
    [31]
    Starikovskaia S M 2006 J. Phys. D: Appl. Phys. 39 265
    [32]
    Sankaran R et al 2007 Proc. Combust. Inst. 31 1291
    [33]
    Bibrzycki J and Poinsot T 2010 Reduced chemical kinetic mechanisms for methane combustion in O 2 /N 2 and O 2 /CO 2 atmosphere Working note ECCOMET WN/CFD/10/17 (France: CERFACS)
    [34]
    Turns S R 2000 An Introduction to Combustion: Concepts and Applications (New York: McGraw-hill)
    [35]
    Spalding D B 1971 Mixing and chemical reaction in steady confined turbulent flames (Pittsburgh, PA: The Combustion Institute) 1971 (https://doi.org/10.1016/S0082-0784(71) 80067-X)
  • Related Articles

    [1]Zilu ZHAO (赵紫璐), Dezheng YANG (杨德正), Wenchun WANG (王文春), Hao YUAN (袁皓), Li ZHANG (张丽), Sen WANG (王森). Volume added surface barrier discharge plasma excited by bipolar nanosecond pulse power in atmospheric air: optical emission spectra influenced by gap distance[J]. Plasma Science and Technology, 2018, 20(11): 115403. DOI: 10.1088/2058-6272/aac881
    [2]Xiang HE (何湘), Chong LIU (刘冲), Yachun ZHANG (张亚春), Jianping CHEN (陈建平), Yudong CHEN (陈玉东), Xiaojun ZENG (曾小军), Bingyan CHEN (陈秉岩), Jiaxin PANG (庞佳鑫), Yibing WANG (王一兵). Diagnostic of capacitively coupled radio frequency plasma from electrical discharge characteristics: comparison with optical emission spectroscopy and fluid model simulation[J]. Plasma Science and Technology, 2018, 20(2): 24005-024005. DOI: 10.1088/2058-6272/aa9a31
    [3]Yunfeng HAN (韩云峰), Shaoyang WEN (温少扬), Hongwei TANG (汤红卫), Xianhu WANG (王贤湖), Chongshan ZHONG (仲崇山). Influences of frequency on nitrogen fixation of dielectric barrier discharge in air[J]. Plasma Science and Technology, 2018, 20(1): 14001-014001. DOI: 10.1088/2058-6272/aa947a
    [4]Hao YUAN (袁皓), Wenchun WANG (王文春), Dezheng YANG (杨德正), Zilu ZHAO (赵紫璐), Li ZHANG (张丽), Sen WANG (王森). Atmospheric air dielectric barrier discharge excited by nanosecond pulse and AC used for improving the hydrophilicity of aramid fibers[J]. Plasma Science and Technology, 2017, 19(12): 125401. DOI: 10.1088/2058-6272/aa8766
    [5]Cheng PAN (潘成), Ju TANG (唐炬), Dibo WANG (王邸博), Yi LUO (罗毅), Ran ZHUO (卓然), Mingli FU (傅明利). Decay characters of charges on an insulator surface after different types of discharge[J]. Plasma Science and Technology, 2017, 19(7): 75503-075503. DOI: 10.1088/2058-6272/aa6436
    [6]TANG Jingfeng (唐井峰), WEI Liqiu (魏立秋), HUO Yuxin (霍玉鑫), SONG Jian (宋健), YU Daren (于达仁), ZHANG Chaohai (张潮海). Effect of Airflows on Repetitive Nanosecond Volume Discharges[J]. Plasma Science and Technology, 2016, 18(3): 273-277. DOI: 10.1088/1009-0630/18/3/10
    [7]YANG Fuxiang (杨富翔), MU Zongxin (牟宗信), ZHANG Jialiang (张家良). Discharge Modes Suggested by Emission Spectra of Nitrogen Dielectric Barrier Discharge with Wire-Cylinder Electrodes[J]. Plasma Science and Technology, 2016, 18(1): 79-85. DOI: 10.1088/1009-0630/18/1/14
    [8]Panagiotis SVARNAS. Vibrational Temperature of Excited Nitrogen Molecules Detected in a 13.56 MHz Electrical Discharge by Sheath-Side Optical Emission Spectroscopy[J]. Plasma Science and Technology, 2013, 15(9): 891-895. DOI: 10.1088/1009-0630/15/9/11
    [9]Imola MOLNAR, Judit PAPP, Alpar SIMON, Sorin Dan ANGHEL. Deactivation of Streptococcus mutans Biofilms on a Tooth Surface Using He Dielectric Barrier Discharge at Atmospheric Pressure[J]. Plasma Science and Technology, 2013, 15(6): 535-541. DOI: 10.1088/1009-0630/15/6/09
    [10]DIAO Ying, XU Jinzhou, HU Qianqian, ZHANG Jing, SHI Jianjun, GUO Ying. Electrical and Optical Characterization of Dielectric Barrier Discharge and Its Application to Plasma Treatment of Poly (ethylene terephtalate) (PET) Fibers[J]. Plasma Science and Technology, 2011, 13(6): 641-644.
  • Cited by

    Periodical cited type(23)

    1. Gao, X., Deng, Y., Wei, Z. et al. Catalytic oxidation of volatile organic compounds by plasma–metal oxide coupling. Journal of Environmental Chemical Engineering, 2025, 13(2): 116045. DOI:10.1016/j.jece.2025.116045
    2. Qu, M., Zheng, Y., Cheng, Z. et al. Mechanism of chlorobenzene removal in biotrickling filter enhanced by non-thermal plasma: Insights from biodiversity and functional gene perspectives. Bioresource Technology, 2025. DOI:10.1016/j.biortech.2024.131931
    3. Zang, X., Sun, H., Wang, W. et al. Plasma-catalytic removal of toluene over bimetallic M/Mn-BTC catalysts in dielectric barrier discharge reactor. Separation and Purification Technology, 2024. DOI:10.1016/j.seppur.2023.125667
    4. Zhang, W., Xing, Y., Hao, L. et al. Effect of gas components on the degradation mechanism of o-dichlorobenzene by non-thermal plasma technology with single dielectric barrier discharge. Chemosphere, 2023. DOI:10.1016/j.chemosphere.2023.139866
    5. Zhang, L., Zou, Z., Lei, Z. et al. Research on the Mechanism of Synergistic Treatment of VOCs–O3 by Low Temperature Plasma Catalysis Technology. Plasma Chemistry and Plasma Processing, 2023, 43(6): 1651-1672. DOI:10.1007/s11090-023-10366-3
    6. Tao, Y., Xu, Y., Chang, K. et al. Dielectric barrier discharge plasma synthesis of Ag/γ-Al2O3 catalysts for catalytic oxidation of CO. Plasma Science and Technology, 2023, 25(8): 085504. DOI:10.1088/2058-6272/acc14c
    7. Shi, X., Liang, W., Yin, G. et al. Degradation of chlorobenzene by non-thermal plasma coupled with catalyst: influence of catalyst, interaction between plasma and catalyst. Plasma Science and Technology, 2023, 25(5): 055506. DOI:10.1088/2058-6272/acae56
    8. Huang, H., He, L., Wang, Y. et al. Experimental study on toluene removal by a two-stage plasma-biofilter system. Plasma Science and Technology, 2022, 24(12): 124011. DOI:10.1088/2058-6272/aca582
    9. Shi, X., Liang, W., Yin, G. et al. Effect of the factors on the mixture of toluene and chlorobenzene degradation by non-thermal plasma. Journal of Environmental Chemical Engineering, 2022, 10(6): 108927. DOI:10.1016/j.jece.2022.108927
    10. Shi, X., Liang, W., Yin, G. et al. Degradation of chlorobenzene by non-thermal plasma with Mn based catalyst | [低温等离子体协同 Mn 基催化剂降解氯苯研究]. Huagong Xuebao/CIESC Journal, 2022, 73(10): 4472-4483. DOI:10.11949/0438-1157.20220696
    11. Zhu, X., Xiong, H., Liu, J. et al. Plasma-enhanced catalytic oxidation of ethylene oxide over Fe–Mn based ternary catalysts. Journal of the Energy Institute, 2022. DOI:10.1016/j.joei.2022.06.002
    12. Zhu, X., Wu, X., Liu, J. et al. Soot Oxidation over γ-Al2O3-Supported Manganese-Based Binary Catalyst in a Dielectric Barrier Discharge Reactor. Catalysts, 2022, 12(7): 716. DOI:10.3390/catal12070716
    13. Yu, X., Dang, X., Li, S. et al. Abatement of chlorobenzene by plasma catalysis: Parameters optimization through response surface methodology (RSM), degradation mechanism and PCDD/Fs formation. Chemosphere, 2022. DOI:10.1016/j.chemosphere.2022.134274
    14. Gu, J., Shen, X., Liang, X. et al. Research on the removal of H2S using dielectric barrier discharge combined with photocatalysis and the fate of sulfur in the reaction. Chemical Engineering and Processing - Process Intensification, 2022. DOI:10.1016/j.cep.2022.108984
    15. Li, Y., Lv, J., Xu, Q. et al. Study of the Treatment of Organic Waste Gas Containing Benzene by a Low Temperature Plasma-Biological Degradation Method. Atmosphere, 2022, 13(4): 622. DOI:10.3390/atmos13040622
    16. Chang, T., Ma, C., Nikiforov, A. et al. Plasma degradation of trichloroethylene: Process optimization and reaction mechanism analysis. Journal of Physics D: Applied Physics, 2022, 55(12): 125202. DOI:10.1088/1361-6463/ac40bb
    17. Lin, Q., Peng, H., Xie, W. et al. Evaluation catalytic performance of Ag/TiO2 in dielectric barrier discharge plasma. Vacuum, 2022. DOI:10.1016/j.vacuum.2021.110844
    18. Xie, L., Lu, J., Ye, G. et al. Decomposition of gaseous chlorobenzene using a DBD combined CuO/α-Fe2O3 catalysis system. Environmental Technology (United Kingdom), 2022, 43(18): 2743-2754. DOI:10.1080/09593330.2021.1899292
    19. Li, S., Yu, X., Dang, X. et al. Non-thermal plasma coupled with MOx/γ-Al2O3 (M: Fe, Co, Mn, Ce) for chlorobenzene degradation: Analysis of byproducts and the reaction mechanism. Journal of Environmental Chemical Engineering, 2021, 9(6): 106562. DOI:10.1016/j.jece.2021.106562
    20. Jin, X., Wang, G., Lian, L. et al. Chlorobenzene removal using dbd coupled with cuo/γ-al2 o3 catalyst. Applied Sciences (Switzerland), 2021, 11(14): 6433. DOI:10.3390/app11146433
    21. Zhou, W., Ye, Z., Nikiforov, A. et al. The influence of relative humidity on double dielectric barrier discharge plasma for chlorobenzene removal. Journal of Cleaner Production, 2021. DOI:10.1016/j.jclepro.2020.125502
    22. Zhao, Y., Ye, K., Zhuang, Y. et al. Progress of manganese catalysts for non-thermal plasma catalysis on VOCs degradation. Huagong Jinzhan/Chemical Industry and Engineering Progress, 2020, 39(S2): 175-184. DOI:10.16085/j.issn.1000-6613.2020-1111
    23. Wang, R., Ren, J., Wu, J. et al. Characteristics and mechanism of toluene removal by double dielectric barrier discharge combined with an Fe2O3/TiO2/γ-Al2O3catalyst. RSC Advances, 2020, 10(68): 41511-41522. DOI:10.1039/d0ra07938c

    Other cited types(0)

Catalog

    Article views (183) PDF downloads (354) Cited by(23)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return