Citation: | Jun DENG (邓俊), Liming HE (何立明), Xingjian LIU (刘兴建), Yi CHEN (陈一). Numerical simulation of plasma-assisted combustion of methane-air mixtures in combustion chamber[J]. Plasma Science and Technology, 2018, 20(12): 125502. DOI: 10.1088/2058-6272/aacdef |
[1] |
Starik A M et al 2015 Phil. Trans. R. Soc. A 373 20140341
|
[2] |
Starikovskiy A and Aleksandrov N 2013 Prog. Energy Combust. Sci. 39 61
|
[3] |
Starikovskiy A 2015 Phil. Trans. R. Soc. A 373 20150074
|
[4] |
Bityurin V A et al 2004 Numerical study of plasma assisted mixing and combustion in non-premixed supersonic flows 42nd AIAA Aerospace Sciences Meeting and Exhibit (Reno, NV: AIAA) 2004 (https://doi.org/10.2514/6.2004-1017)
|
[5] |
Uddi M 2008 Non-equilibrium kinetic studies of repetitively pulsed nanosecond discharge plasma assisted combustion PhD Thesis The Ohio State University, OH
|
[6] |
Adamovich I V and Lempert W R 2015 Plasma Phys. Control. Fusion 57 014001
|
[7] |
Sun W T et al 2012 Combust. Flame 159 221
|
[8] |
Starikovskaia S M 2014 J. Phys. D: Appl. Phys. 47 353001
|
[9] |
Ebato S, Ogino Y and Ohnishi N 2010 Numerical analysis of momentum transfer process in DBD plasma actuator 41st Plasmadynamics and Lasers Conf. (Chicago, IL: AIAA) (https://doi.org/10.2514/6.2010-4635)
|
[10] |
Ombrello T et al 2010 Combust. Flame 157 1906
|
[11] |
Ombrello T et al 2010 Combust. Flame 157 1916
|
[12] |
Kim W et al 2006 Flame stabilization enhancement and NOx production using ultra short repetitively pulsed plasma discharges 44th AIAA Aerospace Sciences Meeting and Exhibit (Reno, NV: AIAA) (https://doi.org/10.2514/ 6.2006-560)
|
[13] |
Mcllroy A 2006 Basic Energy Needs for Clean and Efficient Combustion of 21st Century Transportation Fuels (United States) (https://doi.org/10.2175/935428)
|
[14] |
Bak M S and Cappelli M A 2013 J. Appl. Phys. 113 113301
|
[15] |
Aleksandrov N L, Kindysheva S V and Starikovskiy A Y 2011 Simulation of active species production in nonequilibrium discharge plasmas 42nd AIAA Plasmadynamics and Lasers Conf. (Honolulu, HI: AIAA) 2011 (https://doi.org/10. 2514/6.2011-3447)
|
[16] |
Takana H, Tanaka Y and Nishiyama H 2012 EPL 97 25001
|
[17] |
Ju Y G and Sun W T 2015 Prog. Energy Combust. Sci. 48 21
|
[18] |
Starikovskaia S M and Starikovskii A Y 2010 Plasma assisted ignition and combustion Handbook of Combustion (Weinheim: VCH Wiley)
|
[19] |
Takao Y et al 2011 AIP Conf. Proc. 1333 1051
|
[20] |
Chung T H and Yoon H S 1995 J. Appl. Phys. 78 6441
|
[21] |
Kim H Y, Kwon D C and Yoon N S 2006 Journal of the Korean Physical Society 49 1967
|
[22] |
Jayaraman B and Shyy W 2008 Prog. Aerosp. Sci. 44 139
|
[23] |
Kortshagen U and Heil B G 1999 IEEE Trans. Plasma Sci. 27 1297
|
[24] |
Phelps A V and Pitchford L C 1985 Phys. Rev. A 31 2932
|
[25] |
Ionin A A et al 2007 J. Phys. D: Appl. Phys. 40 25
|
[26] |
Motlagh S and Moore J H 1998 J. Chem. Phys. 109 432
|
[27] |
Yin Z Y et al 2013 Combust. Flame 160 1594
|
[28] |
Uddi M et al 2009 Proc. Combust. Inst. 32 929
|
[29] |
Serbin S et al 2011 Improvement of the gas turbine plasma assisted combustor characteristics 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition (Orlando, FL: AIAA) 2011 (https:// doi.org/10.2514/6.2011-61)
|
[30] |
Fluent 2006 Fluent 6.3 User’s Guide (Lebanon, NH: Fluent Inc.)
|
[31] |
Starikovskaia S M 2006 J. Phys. D: Appl. Phys. 39 265
|
[32] |
Sankaran R et al 2007 Proc. Combust. Inst. 31 1291
|
[33] |
Bibrzycki J and Poinsot T 2010 Reduced chemical kinetic mechanisms for methane combustion in O 2 /N 2 and O 2 /CO 2 atmosphere Working note ECCOMET WN/CFD/10/17 (France: CERFACS)
|
[34] |
Turns S R 2000 An Introduction to Combustion: Concepts and Applications (New York: McGraw-hill)
|
[35] |
Spalding D B 1971 Mixing and chemical reaction in steady confined turbulent flames (Pittsburgh, PA: The Combustion Institute) 1971 (https://doi.org/10.1016/S0082-0784(71) 80067-X)
|
[1] | Hugo Ferrari, Youwen Sun, Kaiyang He, Ricardo Farengo, Pablo García-Martínez. The effect of a radial electric field on the neoclassical tearing mode driven losses of energetic trapped ions[J]. Plasma Science and Technology. DOI: 10.1088/2058-6272/adc29b |
[2] | Jingyuan FU (付敬原), Pengfei LIU (刘鹏飞), Xishuo WEI (魏西硕), Zhihong LIN (林志宏), Nathaniel Mandrachia FERRARO, Raffi NAZIKIAN. Effects of resonant magnetic perturbations on radial electric fields in DIII-D tokamak[J]. Plasma Science and Technology, 2021, 23(10): 105104. DOI: 10.1088/2058-6272/ac190e |
[3] | Haibing LI (李海冰), Jie ZHU (朱杰), Wei YANG (杨威), Xu ZHANG (张旭), Donglai WANG (王东来), Junyu ZHU (朱俊谕), Xingming BIAN (卞星明). Humidity effects on the ground-level resultant electric field of positive DC conductors[J]. Plasma Science and Technology, 2019, 21(7): 74001-074001. DOI: 10.1088/2058-6272/ab0a3f |
[4] | Jie HUANG (黄杰), Yasuhiro SUZUKI (铃木康浩), Yunfeng LIANG (梁云峰), Manni JIA (贾曼妮), Youwen SUN (孙有文), Nan CHU (楚南), Jichan XU (许吉禅), Muquan WU (吴木泉), EAST team. Magnetic field topology modeling under resonant magnetic perturbations on EAST[J]. Plasma Science and Technology, 2019, 21(6): 65105-065105. DOI: 10.1088/2058-6272/ab0d35 |
[5] | Wenjia WANG (王文家), Deng ZHOU (周登), Yue MING (明玥). The residual zonal flow in tokamak plasmas with a poloidal electric field[J]. Plasma Science and Technology, 2019, 21(1): 15101-015101. DOI: 10.1088/2058-6272/aadd8e |
[6] | Yue MING (明玥), Deng ZHOU (周登), Wenjia WANG (王文家). Geodesic acoustic modes in tokamak plasmas with anisotropic distribution and a radial equilibrium electric field[J]. Plasma Science and Technology, 2018, 20(8): 85101-085101. DOI: 10.1088/2058-6272/aabc5c |
[7] | Y WANG (王宇), G ZHAO (赵高), C NIU (牛晨), Z W LIU (刘忠伟), J T OUYANG (欧阳吉庭), Q CHEN (陈强). Reversal of radial glow distribution in helicon plasma induced by reversed magnetic field[J]. Plasma Science and Technology, 2017, 19(2): 24003-024003. DOI: 10.1088/2058-6272/19/2/024003 |
[8] | LIU Wenzheng(刘文正), WANG Hao(王浩), DOU Zhijun(窦志军). Impact of the Insulator on the Electric Field and Generation Characteristics of Vacuum Arc Metal Plasmas[J]. Plasma Science and Technology, 2014, 16(2): 134-141. DOI: 10.1088/1009-0630/16/2/09 |
[9] | Azusa FUKANO, Akiyoshi HATAYAMA. Electric Potential in Surface Produced Negative Ion Source with Magnetic Field Increasing Toward a Wall[J]. Plasma Science and Technology, 2013, 15(3): 266-270. DOI: 10.1088/1009-0630/15/3/15 |
[10] | WU Guojiang (吴国将), ZHANG Xiaodong (张晓东). Calculations of the Ion Orbit Loss Region at the Edge of EAST[J]. Plasma Science and Technology, 2012, 14(9): 789-793. DOI: 10.1088/1009-0630/14/9/03 |
1. | Chen, Z., Huang, Z., Jiang, M. et al. J-TEXT achievements in turbulence and transport in support of future device/reactor. Plasma Science and Technology, 2024, 26(11): 114001. DOI:10.1088/2058-6272/ad663b |
2. | Ding, Y., Wang, N., Chen, Z. et al. Overview of the recent experimental research on the J-TEXT tokamak. Nuclear Fusion, 2024, 64(11): 112005. DOI:10.1088/1741-4326/ad336e |
3. | Anastassiou, G., Zestanakis, P., Antonenas, Y. et al. Role of the edge electric field in the resonant mode-particle interactions and the formation of transport barriers in toroidal plasmas. Journal of Plasma Physics, 2024, 90(1): 905900110. DOI:10.1017/S0022377824000047 |
4. | Zhu, B., Liu, J., Zhang, J. et al. Adaptive energy-preserving algorithms for guiding center system. Plasma Science and Technology, 2023, 25(4): 045102. DOI:10.1088/2058-6272/ac9c4a |
5. | Gage, K.R., Chen, X., Van Zeeland, M. et al. Impact of β n and spectrum of n = 1 applied fields on fast ion losses in DIII-D. Nuclear Fusion, 2023, 63(3): 036002. DOI:10.1088/1741-4326/acb21f |
6. | Galdon-Quiroga, J., Sanchis-Sanchez, L., Chen, X. et al. Experimental investigation of beam-ion losses induced by magnetic perturbations using the light ion beam probe technique in the ASDEX Upgrade tokamak. Nuclear Fusion, 2022, 62(9): 096004. DOI:10.1088/1741-4326/ac74d2 |
7. | Wang, N., Liang, Y., Ding, Y. et al. Advances in physics and applications of 3D magnetic perturbations on the J-TEXT tokamak. Nuclear Fusion, 2022, 62(4): 042016. DOI:10.1088/1741-4326/ac3aff |
8. | Ida, K., McDermott, R.M., Holland, C. et al. Joint meeting of 9th Asia Pacific-Transport Working Group (APTWG) & EU-US Transport Task Force (TTF) workshop. Nuclear Fusion, 2022, 62(3): 037001. DOI:10.1088/1741-4326/ac3f19 |