Advanced Search+
Yun YUAN (袁赟), Xingqiang LU (路兴强), Jiaqi DONG (董家齐), Zhixiong HE (何志雄), Ruibo ZHANG (张睿博), Shijia CHEN (陈诗佳), Xueyu GONG (龚学余), Yun YUAN (袁赟), Xingqiang LU (路兴强), Jiaqi DONG (董家齐), Zhixiong HE (何志雄), Ruibo ZHANG (张睿博), Shijia CHEN (陈诗佳), Xueyu GONG (龚学余). Influence of stationary driven helical current on the m=2/n=1 resistive tearing mode[J]. Plasma Science and Technology, 2019, 21(5): 55101-055101. DOI: 10.1088/2058-6272/aafdc7
Citation: Yun YUAN (袁赟), Xingqiang LU (路兴强), Jiaqi DONG (董家齐), Zhixiong HE (何志雄), Ruibo ZHANG (张睿博), Shijia CHEN (陈诗佳), Xueyu GONG (龚学余), Yun YUAN (袁赟), Xingqiang LU (路兴强), Jiaqi DONG (董家齐), Zhixiong HE (何志雄), Ruibo ZHANG (张睿博), Shijia CHEN (陈诗佳), Xueyu GONG (龚学余). Influence of stationary driven helical current on the m=2/n=1 resistive tearing mode[J]. Plasma Science and Technology, 2019, 21(5): 55101-055101. DOI: 10.1088/2058-6272/aafdc7

Influence of stationary driven helical current on the m=2/n=1 resistive tearing mode

Funds: This work is supported by the National Key R&D Program of China (No. 2017YFE0302000), the Natural Science Foundation of Hunan Province (No. 2017JJ2230), National Natural Science Foundation of China (Nos. 11675073 and 11375085), and the Key Laboratory of Magnetic Confinement Nuclear Fusion Research in Hengyang (2018KJ108).
More Information
  • Received Date: September 25, 2018
  • The influence of stationary driven helical current on tearing mode instability in the m=2/n=1 rational surface is explored numerically using resistive magnetohydrodynamic simulation in cylindrical geometry. The results indicate that the flip instabilities result from the sustained injection of the sufficiently strong helical current driven in the island O-point. The driven helical current induces high order harmonics of instabilities due to the delay of suppressing timing and the increase of its current intensity. With the appropriate current density values, the development of the perturbed kinetic energy can be limited and the occurrence of the flip instabilities can be delayed for a long time. The radial deviation of the current deposition can lead to poor inhibition effect, and the effect of current bias on the boundary is greater than that on the axis.
  • [1]
    Furth H P, Rutherford P H and Selberg H 1973 Phys. Fluids 16 1054
    [2]
    Pletzer A and Perkins F W 1999 Phys. Plasmas 6 1589
    [3]
    Fietz S et al 2015 Nucl. Fusion 55 013018
    [4]
    ITER Physics Expert Group on Disruptions, Control, Plasma, and MHD 1999 Nucl. Fusion 39 2577
    [5]
    Yu Q, Günter S and Lackner K 2000 Phys. Rev. Lett. 85 2949
    [6]
    Heidbrink W W et al 2000 Nucl. Fusion 40 935
    [7]
    Persson M 1991 Nucl. Fusion 31 382
    [8]
    Chan V and Guest G 1982 Nucl. Fusion 22 272
    [9]
    Kurita G et al 1994 Nucl. Fusion 34 1497
    [10]
    Yu Q et al 2000 Phys. Plasmas 7 312
    [11]
    Giruzzi G et al 1999 Nucl. Fusion 39 107
    [12]
    Fisch N J 1987 Rev. Mod. Phys. 59 175
    [13]
    Prater R et al 2003 Nucl. Fusion 43 1128
    [14]
    Petty C C et al 2004 Nucl. Fusion 44 243
    [15]
    Chapman I T et al 2012 Nucl. Fusion 52 063006
    [16]
    Sozzi C et al 2012 EPJ Web Conf. 32 02017
    [17]
    Felici F et al 2012 Nucl. Fusion 52 074001
    [18]
    Kirov K K et al 2002 Plasma Phys. Control. Fusion 44 2583
    [19]
    Maraschek M et al 2007 Phys. Rev. Lett. 98 025005
    [20]
    Zohm H et al 2007 Nucl. Fusion 47 228
    [21]
    Xu H D et al 2016 Plasma Sci. Technol. 18 442
    [22]
    Liang S Y et al 2016 Plasma Sci. Technol. 18 197
    [23]
    Zhang Y et al 2016 Fusion Sci. Technol. 70 62
    [24]
    Hegna C C and Callen J D 1997 Phys. Plasmas 4 2940
    [25]
    Rutherford P H 1973 Phys. Fluids 16 1903
    [26]
    Borgogno D et al 2014 Phys. Plasmas 21 060704
    [27]
    Chen L et al 2014 Phys. Plasmas 21 102106
    [28]
    Février O et al 2016 Plasma Phys. Control. Fusion 58 045015
    [29]
    Wang S, Ma Z W and Zhang W 2016 Phys. Plasmas 23 052503
    [30]
    Wang X J et al 2018 Nucl. Fusion 58 016045
    [31]
    Zhang W, Wang S and Ma Z W 2017 Phys. Plasmas 24 062510
    [32]
    Jenkins T G et al 2010 Phys. Plasmas 17 012502
    [33]
    Yuan Y et al 2018 Phys. Plasmas 25 012510
    [34]
    Ishii Y et al 2000 Phys. Plasmas 7 4477
  • Related Articles

    [1]Yueqiang LI, Bin WU, Chao GAO, Haibo ZHENG, Yushuai WANG, Rihua YAN. Turbulent boundary layer control with DBD plasma actuators[J]. Plasma Science and Technology, 2023, 25(4): 045508. DOI: 10.1088/2058-6272/aca503
    [2]Bin WU (武斌), Chao GAO (高超), Feng LIU (刘峰), Ming XUE (薛明), Yushuai WANG (王玉帅), Borui ZHENG (郑博睿). Reduction of turbulent boundary layer drag through dielectric-barrier-discharge plasma actuation based on the Spalding formula[J]. Plasma Science and Technology, 2019, 21(4): 45501-045501. DOI: 10.1088/2058-6272/aaf2e2
    [3]Haiying WEI (魏海英), Hongge GUO (郭红革), Meili ZHOU (周美丽), Lei YUE (岳蕾), Qiang CHEN (陈强). DBD plasma assisted atomic layer deposition alumina barrier layer on self-degradation polylactic acid film surface[J]. Plasma Science and Technology, 2019, 21(1): 15503-015503. DOI: 10.1088/2058-6272/aae0ee
    [4]Zheng LI (李铮), Zhiwei SHI (史志伟), Hai DU (杜海), Qijie SUN (孙琪杰), Chenyao WEI (魏晨瑶), Xi GENG (耿玺). Analysis of flow separation control using nanosecond-pulse discharge plasma actuators on a flying wing[J]. Plasma Science and Technology, 2018, 20(11): 115504. DOI: 10.1088/2058-6272/aacaf0
    [5]Lu MA (马璐), Xiaodong WANG (王晓东), Jian ZHU (祝健), Shun KANG (康顺). Effect of DBD plasma excitation characteristics on turbulent separation over a hump model[J]. Plasma Science and Technology, 2018, 20(10): 105503. DOI: 10.1088/2058-6272/aacdf0
    [6]Haiying WEI (魏海英), Hongge GUO (郭红革), Lijun SANG (桑利军), Xingcun LI (李兴存), Qiang CHEN (陈强). Study on deposition of Al2O3 films by plasma-assisted atomic layer with different plasma sources[J]. Plasma Science and Technology, 2018, 20(6): 65508-065508. DOI: 10.1088/2058-6272/aaacc7
    [7]Yadong HUANG (黄亚冬), Benmou ZHOU (周本谋). Active control of noise amplification in the flow over a square leading-edge flat plate utilizing DBD plasma actuator[J]. Plasma Science and Technology, 2018, 20(5): 54021-054021. DOI: 10.1088/2058-6272/aab5bb
    [8]Junkai YAO (姚军锴), Danjie ZHOU (周丹杰), Haibo HE (何海波), Chengjun HE (何承军), Zhiwei SHI (史志伟), Hai DU (杜海). Experimental investigation of lift enhancement for flying wing aircraft using nanosecond DBD plasma actuators[J]. Plasma Science and Technology, 2017, 19(4): 44002-044002. DOI: 10.1088/2058-6272/aa57f1
    [9]R. KHOSHKHOO, A. JAHANGIRIAN. Numerical Simulation of Stall Flow Control Using a DBD Plasma Actuator in Pulse Mode[J]. Plasma Science and Technology, 2016, 18(9): 933-942. DOI: 10.1088/1009-0630/18/9/10
    [10]WANG Yuling (王玉玲), GAO Chao (高超), WU Bin (武斌), HU Xu (胡旭). Simulation of Flow Around Cylinder Actuated by DBD Plasma[J]. Plasma Science and Technology, 2016, 18(7): 768-774. DOI: 10.1088/1009-0630/18/7/12
  • Cited by

    Periodical cited type(9)

    1. Yan, R., Wu, B., Gao, C. et al. Selective control of Poiseuille Rayleigh Bénard flows instabilities by spanwise dielectric-barrier-discharge plasma actuation. Physics of Fluids, 2023, 35(12): 127123. DOI:10.1063/5.0177318
    2. Zheng, B., Liu, Y., Yu, M. et al. Flow control performance evaluation of a tri-electrode sliding discharge plasma actuator. Chinese Physics B, 2023, 32(9): 095203. DOI:10.1088/1674-1056/acae76
    3. Zhang, Y., Gao, C., Wu, B. et al. Dynamic stall flow control with multistage dielectric-barrier discharge actuation under light stall conditions. Physics of Plasmas, 2023, 30(8): 083513. DOI:10.1063/5.0158088
    4. SU, Z., ZONG, H., LIANG, H. et al. Minimizing airfoil drag at low angles of attack with DBD-based turbulent drag reduction methods. Chinese Journal of Aeronautics, 2023, 36(4): 104-119. DOI:10.1016/j.cja.2022.11.019
    5. Xu, Z., Wu, B., Gao, C. et al. Experimental investigation of dynamic stall flow control using a microsecond-pulsed plasma actuator. Plasma Science and Technology, 2023, 25(3): 035509. DOI:10.1088/2058-6272/aca18f
    6. Su, Z., Zong, H., Liang, H. et al. Progress and outlook of plasma-based turbulent skin-friction drag reduction | [等离子体湍流摩擦减阻研究进展与展望]. Kongqi Donglixue Xuebao/Acta Aerodynamica Sinica, 2023, 41(9): 1-19. DOI:10.7638/kqdlxxb-2023.0083
    7. Xu, Z., Wu, B., Gao, C. et al. Numerical simulation of dynamic stall flow control using a multi-dielectric barrier discharge plasma actuation strategy. Physics of Plasmas, 2022, 29(10): 103503. DOI:10.1063/5.0107530
    8. Xue, M., Ni, Z., Gao, C. et al. Deflected Synthetic Jet due to Vortices Induced by a Tri-Electrode Plasma Actuator. AIAA Journal, 2022, 60(6): 3695-3706. DOI:10.2514/1.J061223
    9. Jiang, H., Li, G., Liu, H. et al. Numerical verification of the two-spike-current behavior in the initial stage of plasma formation in a pulsed surface dielectric barrier discharge. Journal of Physics D: Applied Physics, 2021, 54(34): 345201. DOI:10.1088/1361-6463/ac0705

    Other cited types(0)

Catalog

    Article views (161) PDF downloads (149) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return