Advanced Search+
A YU TELNOVA, G S KURSKIEV, E O KISELEV, N N BAKHAREV, V K GUSEV, N A KHROMOV, S YU MEDVEDEV, V B MIINAEV, I V MIROSHNIKOV, M I PATROV, Yu V PETROV, N V SAKHAROV, A D SLADKOMEDOVA, P B SHCHEGOLEV, V V SOLOKHA, V A TOKAREV, S YU TOLSTYAKOV, E A TUKHMENEVA. Influence of the safety factor profile on the particle and heat transport in the Globus-M spherical tokamak[J]. Plasma Science and Technology, 2019, 21(11): 115101. DOI: 10.1088/2058-6272/ab2ff6
Citation: A YU TELNOVA, G S KURSKIEV, E O KISELEV, N N BAKHAREV, V K GUSEV, N A KHROMOV, S YU MEDVEDEV, V B MIINAEV, I V MIROSHNIKOV, M I PATROV, Yu V PETROV, N V SAKHAROV, A D SLADKOMEDOVA, P B SHCHEGOLEV, V V SOLOKHA, V A TOKAREV, S YU TOLSTYAKOV, E A TUKHMENEVA. Influence of the safety factor profile on the particle and heat transport in the Globus-M spherical tokamak[J]. Plasma Science and Technology, 2019, 21(11): 115101. DOI: 10.1088/2058-6272/ab2ff6

Influence of the safety factor profile on the particle and heat transport in the Globus-M spherical tokamak

Funds: The research (radiation losses and TS measurements, data processing, and transport modeling using ASTRA code, NBI absorbed power and fast particle confinement estimation) was financially supported by an RSF research project (no. 17-72- 20076).
More Information
  • Received Date: April 07, 2019
  • Revised Date: July 05, 2019
  • Accepted Date: July 07, 2019
  • The advanced tokamak scenario is a promising operation scenario for ITER and fusion neutron sources. In this scenario the minimum value of the safety factor in the center of the plasma exceeds unity. In the compact spherical tokamak Globus-M, the formation of such conditions is possible with neutral beam injection at the current ramp-up phase. Due to the slower diffusion of current inside the plasma, a zone is formed with reduced heat and particle transport across the magnetic field, which affects the temperature and density profiles of the plasma. This leads to the peaked density profile formation and improvement of the energy confinement time. To achieve a high fraction of the bootstrap current, it is necessary to increase the plasma pressure. At the same time, the maximum allowable pressure is limited to the normalized beta limit.
  • [1]
    Taylor T S 1997 Plasma Phys. Control. Fusion 39 B47
    [2]
    Turco F et al 2015 Phys. Plasmas 22 056113
    [3]
    Dnestrovskij A Y et al 2015 Nucl. Fusion 55 063007
    [4]
    Igochine V 2012 Nucl. Fusion 52 074010
    [5]
    Sykes A et al 1999 Nucl. Fusion 39 1271
    [6]
    Sabbagh S A et al 2013 Nucl. Fusion 53 104007
    [7]
    ITER Physics Expert Group on Confinement and Transport 1999 Nucl. Fusion 39 2175
    [8]
    Bakharev N N et al 2018 Nucl. Fusion 58 126029
    [9]
    Valovič M et al 2009 Nucl. Fusion 49 075016
    [10]
    Gerhardt S P et al 2011 Nucl. Fusion 51 073031
    [11]
    Gusev V K et al 1999 Tech. Phys. 44 1054
    [12]
    Bakharev N N et al 2015 Nucl. Fusion 55 043023
    [13]
    Yashin A Y et al 2018 Nucl. Fusion 58 112009
    [14]
    Kurskiev G S et al 2012 Problems of Atomic Science and Technology Ser. Thermonucl. Fusion 2 81 (in Russian:Курскиев Г С и др 2012 ВAНТ Сер.: Термоядерный синтез. 2 81)
    [15]
    Pereverzev G and Yushmanov P N 2002 Max-Plank IPP Report 5 (http://w3.pppl.gov/∼hammett/work/2009/Astra_ocr.pdf)
    [16]
    Lao L L et al 1985 Nucl. Fusion 25 1611
    [17]
    Afanasyev V I, Gondhalekar A and Kislyakov A I 1999 On the possibility of determining the radial profile of hydrogen isotope composition of JET plasmas, and of deducing radial transport of the isotope ions Preprint JET-R-(00)04 (www.iop.org/Jet/fulltext/JETR00004.pdf)
    [18]
    Pankin A et al 2004 Comput. Phys. Commun. 159 157
    [19]
    Telnova A Y et al 2017 J. Phys.: Conf. Ser. 907 012014
    [20]
    Sladkomedova A D et al 2018 Rev. Sci. Instrum. 89 083509
    [21]
    Diamond P H et al 2004 Physics of zonal flows Proc. 20th IAEA Fusion Energy Conf. vol 2004 (Vienna: IAEA)
    [22]
    Kaye S M et al 2007 Nucl. Fusion 47 499
    [23]
    Avdeeva G F et al 2016 J. Phys.: Conf. Ser. 666 012002
    [24]
    Tel’nova A Y et al 2018 Tech. Phys. Lett. 44 700
    [25]
    Garbet X et al 2004 Plasma Phys. Control. Fusion 46 B557
    [26]
    Houlberg W A et al 1997 Phys. Plasmas 4 3230
    [27]
    Angioni C et al 2003 Phys. Plasmas 10 3225
    [28]
    Ware A A 1970 Phys. Rev. Lett. 25 15
    [29]
    Degtyarev L M et al 1997 Comput. Phys. Comm. 103 10
    [30]
    Huysmans G T A et al 2001 Phys. Plasmas 8 4292
    [31]
    Kurskiev G S et al 2019 Nucl. Fusion 59 066032
    [32]
    Kurskiev G S et al 2011 Tech. Phys. Lett. 37 1127
    [33]
    Minaev V B et al 2017 Nucl. Fusion 57 066047
    [34]
    Shchegolev P B et al 2016 Thermal energy confinement study in the Globus-M spherical tokamak Proc. 43rd EPS Conf. on Plasma Physics Leuven Belgium (EPS) vol 2016
  • Related Articles

    [1]V. A. KRUPIN, M. R. NURGALIEV, A. R. NEMETS, I. A. ZEMTSOV, S. D. SUNTSOV, T. B. MYALTON, D. S. SERGEEV, N. A. SOLOVEV, D. V. SARYCHEV, D. V. RYJAKOV, S. N. TUGARINOV, N. N. NAUMENKO. Ion heat transport in electron cyclotron resonance heated L-mode plasma on the T-10 tokamak[J]. Plasma Science and Technology, 2024, 26(4): 045101. DOI: 10.1088/2058-6272/ad0c9c
    [2]Zhenyu WANG (王振宇), Binhao JIANG (江滨浩), N A STROKIN, A N STUPIN. Study on plasma sheath and plasma transport properties in the azimuthator[J]. Plasma Science and Technology, 2018, 20(4): 45501-045501. DOI: 10.1088/2058-6272/aaa754
    [3]Heng LAN (兰恒), Guosheng XU (徐国盛), Kevin TRITZ, Ning YAN (颜宁), Tonghui SHI (石同辉), Yongliang LI (李永亮), Tengfei WANG (王腾飞), Liang WANG (王亮), Jingbo CHEN (陈竞博), Yanmin DUAN (段艳敏), Yi YUAN (原毅), Youwen SUN (孙有文), Shuai GU (顾帅), Qing ZANG (臧庆), Ran CHEN (陈冉), Liang CHEN (陈良), Xingwei ZHENG (郑星炜), Shuliang CHEN (陈树亮), HuanLIU (刘欢), YangYE (叶扬), Huiqian WANG (汪惠乾), Baonian WAN (万宝年), the EAST Team. Analysis of electron temperature, impurity transport and MHD activity with multi-energy soft x-ray diagnostic in EAST tokamak[J]. Plasma Science and Technology, 2017, 19(12): 125101. DOI: 10.1088/2058-6272/aa8cbf
    [4]WANG Chunlin (王春林), WU Yi (吴翊), CHEN Zhexin (陈喆歆), YANG Fei (杨飞), FENG Ying (冯英), RONG Mingzhe (荣命哲), ZHANG Hantian (张含天). Thermodynamic and Transport Properties of Real Air Plasma in Wide Range of Temperature and Pressure[J]. Plasma Science and Technology, 2016, 18(7): 732-739. DOI: 10.1088/1009-0630/18/7/06
    [5]LIU Hai (刘海), CHEN Zhipeng (陈志鹏), ZHUANG Ge (庄革), SUN Yue (孙岳), ZHU Lizhi (朱立志), XIAO Chijin (肖持进), CHEN Jie (陈杰). Investigation of the Ion Energy Transport in the Scrape-Off Layer on the J-TEXT Tokamak Using a Retarding Field Analyzer[J]. Plasma Science and Technology, 2016, 18(6): 601-606. DOI: 10.1088/1009-0630/18/6/04
    [6]WANG Fuqiong(王福琼), CHEN Yiping(陈一平), HU Liqun(胡立群). DIVIMP Modeling of Impurity Transport in EAST[J]. Plasma Science and Technology, 2014, 16(7): 642-649. DOI: 10.1088/1009-0630/16/7/03
    [7]HUANG Xianli (黄贤礼), SHI Zhongbing (石中兵), CUI Zhengying (崔正英), ZHONG Wulv (钟武律), DONG Yunbo (董云波), CHEN Chengyuan (陈程远), FENG Beibin (冯北滨), YAO Lianghua (姚良骅), LIU Zetian (刘泽田), DING Xuantong (丁玄同), et al. Heat Transport During H-Mode in the HL-2A Tokamak[J]. Plasma Science and Technology, 2013, 15(3): 221-224. DOI: 10.1088/1009-0630/15/3/06
    [8]LIN Zhihong (林志宏), S. ETHIER, T. S. HAHM, W. M. TANG. Verification of Gyrokinetic Particle Simulation of Device Size Scaling of Turbulent Transport[J]. Plasma Science and Technology, 2012, 14(12): 1125-1126. DOI: 10.1088/1009-0630/14/12/17
    [9]SUN Yue (孙岳), CHEN Zhipeng (陈志鹏), WANG Zhijiang (王之江), ZHU Mengzhou (朱孟周), ZHUANG Ge (庄革), J-TEXT team. Experimental Studies of Electrostatic Fluctuations and Turbulent Transport in the Boundary of J-TEXT Tokamak Using Reciprocating Probe[J]. Plasma Science and Technology, 2012, 14(12): 1041-1047. DOI: 10.1088/1009-0630/14/12/02
    [10]WANG Junyi (王君一), CHEN Yiping(陈一平). Study of Carbon Impurity Transport at SOL in EAST[J]. Plasma Science and Technology, 2010, 12(5): 535-539.
  • Cited by

    Periodical cited type(5)

    1. Zhiltsov, N.S., Kurskiev, G.S., Tolstyakov, S.Y. et al. Thomson scattering diagnostics at the Globus-M2 tokamak. Fusion Engineering and Design, 2025. DOI:10.1016/j.fusengdes.2024.114753
    2. Asadulin, G.M., Kirneva, N.A., Bel’bas, I.S. et al. Detection of Internal Transport Barrier in the T-10 Tokamak Using Thomson Scattering Diagnostics. Plasma Physics Reports, 2024, 50(2): 179-187. DOI:10.1134/S1063780X23602080
    3. Yu. Yashin, A., Bulanin, V.V., Gusev, V.K. et al. Observation of quasi-coherent fluctuations in the Globus-M spherical tokamak. Nuclear Fusion, 2021, 61(9): 092001. DOI:10.1088/1741-4326/ac1297
    4. Telnova, A.Y., Kurskiev, G.S., Balachenkov, I.M. et al. First Heat and Particles Transport Study in the Globus-M2 Spherical Tokamak with Neutral Beam Injection at the Current Ramp-Up. Technical Physics, 2021, 66(3): 401-408. DOI:10.1134/S1063784221030221
    5. Bakharev, N.N., Balachenkov, I.M., Chernyshev, F.V. et al. First Globus-M2 Results. Plasma Physics Reports, 2020, 46(7): 675-682. DOI:10.1134/S1063780X20070016

    Other cited types(0)

Catalog

    Article views (168) PDF downloads (343) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return