Processing math: 100%
Advanced Search+
V. A. KRUPIN, M. R. NURGALIEV, A. R. NEMETS, I. A. ZEMTSOV, S. D. SUNTSOV, T. B. MYALTON, D. S. SERGEEV, N. A. SOLOVEV, D. V. SARYCHEV, D. V. RYJAKOV, S. N. TUGARINOV, N. N. NAUMENKO. Ion heat transport in electron cyclotron resonance heated L-mode plasma on the T-10 tokamak[J]. Plasma Science and Technology, 2024, 26(4): 045101. DOI: 10.1088/2058-6272/ad0c9c
Citation: V. A. KRUPIN, M. R. NURGALIEV, A. R. NEMETS, I. A. ZEMTSOV, S. D. SUNTSOV, T. B. MYALTON, D. S. SERGEEV, N. A. SOLOVEV, D. V. SARYCHEV, D. V. RYJAKOV, S. N. TUGARINOV, N. N. NAUMENKO. Ion heat transport in electron cyclotron resonance heated L-mode plasma on the T-10 tokamak[J]. Plasma Science and Technology, 2024, 26(4): 045101. DOI: 10.1088/2058-6272/ad0c9c

Ion heat transport in electron cyclotron resonance heated L-mode plasma on the T-10 tokamak

More Information
  • Author Bio:

    M. R. NURGALIEV: nurgaliev_mr@nrcki.ru

  • Corresponding author:

    M. R. NURGALIEV, nurgaliev_mr@nrcki.ru

  • Received Date: February 20, 2023
  • Revised Date: September 05, 2023
  • Accepted Date: September 07, 2023
  • Available Online: April 08, 2024
  • Published Date: April 10, 2024
  • Anomalous ion heat transport is analyzed in the T-10 tokamak plasma heated with electron cyclotron resonance heating (ECRH) in second-harmonic extra-ordinary mode. Predictive modeling with empirical scaling for Ohmical heat conductivity shows that in ECRH plasmas the calculated ion temperature could be overestimated, so an increase of anomalous ion heat transport is required. To study this effect two scans are presented: over the EC resonance position and over the ECRH power. The EC resonance position varies from the high-field side to the low-field side by variation of the toroidal magnetic field. The scan over the heating power is presented with on-axis and mixed ECRH regimes. Discharges with high anomalous ion heat transport are obtained in all considered regimes. In these discharges the power balance ion heat conductivity exceeds the neoclassical level by up to 10 times. The high ion heat transport regimes are distinguished by three parameters: the Te/Ti ratio, the normalized electron density gradient R/Lne, and the ion–ion collisionality νii. The combination of high Te/Ti, high νii, and R/Lne=6−10 results in values of normalized anomalous ion heat fluxes up to 10 times higher than in the low transport scenario.

  • [1]
    Beurskens M N A et al 2021 Nucl. Fusion 62 016015
    [2]
    Melnikov A V et al 2022 JETP Lett. 115 324 doi: 10.1134/S0021364022200279
    [3]
    Beurskens, M N A et al 2021 Nucl. Fusion 61 116072 doi: 10.1088/1741-4326/ac1653
    [4]
    Takahashi H et al 2017 Nucl. Fusion 57 086029 doi: 10.1088/1741-4326/aa754b
    [5]
    Stallard B W et al 1990 Nucl. Fusion 30 2235 doi: 10.1088/0029-5515/30/11/003
    [6]
    Yoshida M et al 2017 Nucl. Fusion 57 056027 doi: 10.1088/1741-4326/aa611e
    [7]
    Staebler G M, Kinsey J E, and Waltz R E 2005 Phys. Plasmas 12 102508 doi: 10.1063/1.2044587
    [8]
    Angioni C et al 2022 Nucl. Fusion 62 066015 doi: 10.1088/1741-4326/ac592b
    [9]
    Krupin V A et al 2022 Phys. Plasmas 29 062508 doi: 10.1063/5.0095520
    [10]
    Angioni C et al 2004 Nucl. Fusion 44 827 doi: 10.1088/0029-5515/44/8/003
    [11]
    Sertoli M et al 2011 Plasma Phys. Control. Fusion 53 035024 doi: 10.1088/0741-3335/53/3/035024
    [12]
    McDermott R M et al 2011 Plasma Phys. Control. Fusion 53 035007 doi: 10.1088/0741-3335/53/3/035007
    [13]
    Odstrcil T et al Turbulent impurity transport in DⅢ-D plasmas with on-axis electron heating In: Proceedings of the 45th EPS Conference on Plasma Physics Praha: European Physical Society 2018
    [14]
    Cui Z Y et al 2018 Nucl. Fusion 58 056012 doi: 10.1088/1741-4326/aab166
    [15]
    Houlberg W A et al 1997 Phys. Plasmas 4 3230 doi: 10.1063/1.872465
    [16]
    Zvonkov A et al 1998 Plasma Phys. Rep. 24 389
    [17]
    Braginskii S I 1965 Rev. Plasma Phys. 1 205
    [18]
    Luce T C et al 2018 Nucl. Fusion 58 026023 doi: 10.1088/1741-4326/aa9af7
    [19]
    Nurgaliev M R et al The comparison of ion and electron anomalous heat conductivities in T-10 plasma In: Proceedings of the 46th EPS Conference on Plasma Physics Milan: European Physical Society 2019
    [20]
    Krupin V A et al 2018 Plasma Phys. Control. Fusion 60 115003 doi: 10.1088/1361-6587/aada6b
    [21]
    ITER Physics Expert Group Chairs and Co-Chairs and ITER Joint Central Team and Physics Integration Unit 1999 Nucl. Fusion 39 2137 doi: 10.1088/0029-5515/39/12/301
  • Related Articles

    [1]Jiangang FANG, Zhongyong CHEN, Wei YAN, Nengchao WANG, Feiyue MAO, Qiang LUO, Zijian XUAN, Xixuan CHEN, Zhengkang REN, Feng ZHANG, Mei HUANG, Donghui XIA, Zhoujun YANG, Zhipeng CHEN, Yonghua DING, the J-TEXT Team. Suppression of the m/n = 2/1 tearing mode by electron cyclotron resonance heating on J-TEXT[J]. Plasma Science and Technology, 2024, 26(8): 085101. DOI: 10.1088/2058-6272/ad3616
    [2]Yifan ZHANG, Takumi ONCHI, Kazuo NAKAMURA, Qilin YUE, Takahiro NAGATA, Shoji KAWASAKI, Kengoh KURODA, Makoto HASEGAWA, Ryuya IKEZOE, Takeshi IDO, Kazuaki HANADA, Hiroshi IDEI. Initial testing of ohmic heating through double flux swing during electron cyclotron start-up in the QUEST spherical tokamak[J]. Plasma Science and Technology, 2023, 25(5): 055104. DOI: 10.1088/2058-6272/acafc2
    [3]Dingzong ZHANG (张定宗), Youjun HU (胡友俊), Nong XIANG (项农), Cheng YANG (杨程), Wei SHEN (申伟), Yanqing HUANG (黄艳清), Hongbo LIU (刘洪波). Numerical study on the loss of fast ions produced by minority ion cyclotron resonance heating in EAST[J]. Plasma Science and Technology, 2021, 23(11): 115101. DOI: 10.1088/2058-6272/ac16be
    [4]Xiaogang YUAN (袁小刚), Lei CHANG (苌磊), Xin YANG (杨鑫), Haishan ZHOU (周海山), Guangnan LUO (罗广南). On the heating mechanism of electron cyclotron resonance thruster immerged in a non-uniform magnetic field[J]. Plasma Science and Technology, 2020, 22(9): 94003-094003. DOI: 10.1088/2058-6272/ab80d3
    [5]Yizhou JIN (金逸舟), Juan YANG (杨涓), Jun SUN (孙俊), Xianchuang LIU (刘宪闯), Yizhi HUANG (黄益智). Experiment and analysis of the neutralization of the electron cyclotron resonance ion thruster[J]. Plasma Science and Technology, 2017, 19(10): 105502. DOI: 10.1088/2058-6272/aa76d9
    [6]Tae-Seong KIM, Seung Ho JEONG, Doo Hee CHANG, Kwang Won LEE, Sang-Ryul IN. Performance of a New Ion Source for KSTAR Tokamak Plasma Heating[J]. Plasma Science and Technology, 2014, 16(6): 620-624. DOI: 10.1088/1009-0630/16/6/15
    [7]SHEN Wulin (沈武林), MA Zhibin (马志斌), TAN Bisong (谭必松), WU Jun (吴俊). Ion Heating in an ECR Plasma with a Magnetic Mirror Field[J]. Plasma Science and Technology, 2013, 15(6): 516-520. DOI: 10.1088/1009-0630/15/6/06
    [8]GAO Min (高敏), CHEN Shaoyong (陈少永), TANG Changjian (唐昌建). Electron Cyclotron Harmonic Wave Heating in Tokamak Plasmas with Different Polarization Modes[J]. Plasma Science and Technology, 2013, 15(4): 313-317. DOI: 10.1088/1009-0630/15/4/02
    [9]HUANG Xianli (黄贤礼), SHI Zhongbing (石中兵), CUI Zhengying (崔正英), ZHONG Wulv (钟武律), DONG Yunbo (董云波), CHEN Chengyuan (陈程远), FENG Beibin (冯北滨), YAO Lianghua (姚良骅), LIU Zetian (刘泽田), DING Xuantong (丁玄同), et al. Heat Transport During H-Mode in the HL-2A Tokamak[J]. Plasma Science and Technology, 2013, 15(3): 221-224. DOI: 10.1088/1009-0630/15/3/06
    [10]ZHU Xueguang(朱学光). Influence of the Phase of the Antenna Current Standing Wave on the Power Flux in Ion Cyclotron Heating[J]. Plasma Science and Technology, 2010, 12(5): 543-546.

Catalog

    Article views (32) PDF downloads (15) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return