Citation: | Xiaogang YUAN (袁小刚), Lei CHANG (苌磊), Xin YANG (杨鑫), Haishan ZHOU (周海山), Guangnan LUO (罗广南). On the heating mechanism of electron cyclotron resonance thruster immerged in a non-uniform magnetic field[J]. Plasma Science and Technology, 2020, 22(9): 94003-094003. DOI: 10.1088/2058-6272/ab80d3 |
[1] |
Ganguli A et al 2019 Plasma Sources Sci. Technol. 28 035014
|
[2] |
Correyero S et al 2019 Phys. Plasmas 26 053511
|
[3] |
Skalyga V et al 2019 Plasma Phys. Rep. 45 984
|
[4] |
Brainerd Jerome R A 2009 13th Conf. on Thermophysics Applications in Microgravity/6th Symp. on New Frontiers in Space Propulsion Sciences/1st Symp. on Astrosociology, Propulsion & Energy Sciences Int. Forum Spesif-2009 vol 133
|
[5] |
Yang J et al 2008 Rev. Sci. Instrum. 79 083503
|
[6] |
Jin Y et al 2017 Plasma Sci. Technol. 19 1009
|
[7] |
Yang J et al 2013 J. Propul. Power 29 744
|
[8] |
Bentounes J et al 2018 Plasma Sources Sci. Technol. 27 055015
|
[9] |
Yang J et al 2018 Plasma Sci. Technol. 20 085402
|
[10] |
Yang J et al 2008 Phys. Plasmas 15 023503
|
[11] |
Zhou H et al 2014 J. Nucl. Mater. 455 470
|
[12] |
Liu H et al 2019 J. Nucl. Mater. 514 109
|
[13] |
Anderl R et al 1999 J. Nucl. Mater. 266 761
|
[14] |
Zushi H et al 1988 Nucl. Fusion 28 1801
|
[15] |
Conway G D and Blackwell B D 1991 Plasma Phys. Control.Fusion 33 135
|
[16] |
Fidone I et al 1978 Phys. Fluids 21 645
|
[17] |
Girka A V, Girka V O and Pavlenko I V 2010 Probl. At. Sci.Technol. 4 274
|
[18] |
Kushner M J 2009 J. Phys. D: Appl. Phys. 42 194013
|
[19] |
Hagelaar G J M and Pitchford L C 2005 Plasma Sources Sci.Technol. 14 722
|
[20] |
Menietti J D et al 2019 J. Geophys. Res.-Space Phys. 124 5709
|
[21] |
Starodubtsev M et al 2019 Phys. Plasmas 26 072902
|
[22] |
Lopez N A and Ram A K 2018 Plasma Phys. Control. Fusion 60 125012
|
[1] | Juan LI (李娟), Shenghui FU (付省辉), Yurou YANG (杨雨柔), Zhenfeng DING (丁振峰). On abnormal behaviors of ion beam extracted from electron cyclotron resonance ion thruster driven by rod antenna in cross magnetic field[J]. Plasma Science and Technology, 2021, 23(8): 85506-085506. DOI: 10.1088/2058-6272/ac061a |
[2] | Liang HAN (韩亮), Jun GAO (高俊), Tao CHEN (陈涛), Yuntian CONG (丛云天), Zongliang LI (李宗良). A method to measure the in situ magnetic field in a Hall thruster based on the Faraday rotation effect[J]. Plasma Science and Technology, 2019, 21(8): 85502-085502. DOI: 10.1088/2058-6272/ab0f63 |
[3] | Hui LIU (刘辉), Xiang NIU (牛翔), Huan WU (伍环), Daren YU (于达仁). Simulation study of the influence of leak electrons on the discharge characteristics of a cusped field thruster[J]. Plasma Science and Technology, 2019, 21(4): 45502-045502. DOI: 10.1088/2058-6272/aaf674 |
[4] | Gerhard FRANZ, Ralf MEYER, Markus-Christian AMANN. Correlation of III/V semiconductor etch results with physical parameters of high-density reactive plasmas excited by electron cyclotron resonance[J]. Plasma Science and Technology, 2017, 19(12): 125503. DOI: 10.1088/2058-6272/aa89e0 |
[5] | Yizhou JIN (金逸舟), Juan YANG (杨涓), Jun SUN (孙俊), Xianchuang LIU (刘宪闯), Yizhi HUANG (黄益智). Experiment and analysis of the neutralization of the electron cyclotron resonance ion thruster[J]. Plasma Science and Technology, 2017, 19(10): 105502. DOI: 10.1088/2058-6272/aa76d9 |
[6] | A. K. FEROUANI, M. LEMERINI, L. MERAD, M. HOUALEF. Numerical Modelling Point-to-Plane of Negative Corona Discharge in N2 Under Non-Uniform Electric Field[J]. Plasma Science and Technology, 2015, 17(6): 469-474. DOI: 10.1088/1009-0630/17/6/06 |
[7] | RAN Huijuan(冉慧娟), WANG Lei(王磊), WANG Jue(王珏), WANG Tao(王涛), YAN Ping(严萍). Discharge Characteristics of SF6 in a Non-Uniform Electric Field Under Repetitive Nanosecond Pulses[J]. Plasma Science and Technology, 2014, 16(5): 465-470. DOI: 10.1088/1009-0630/16/5/05 |
[8] | HUO Wenqing (霍文青), GUO Shijie (郭世杰), DING Liang (丁亮), XU Yuemin (徐跃民). Upper Hybrid Resonance of Microwaves with a Large Magnetized Plasma Sheet[J]. Plasma Science and Technology, 2013, 15(10): 979-984. DOI: 10.1088/1009-0630/15/10/04 |
[9] | Azusa FUKANO, Akiyoshi HATAYAMA. Electric Potential in Surface Produced Negative Ion Source with Magnetic Field Increasing Toward a Wall[J]. Plasma Science and Technology, 2013, 15(3): 266-270. DOI: 10.1088/1009-0630/15/3/15 |
[10] | I. Y. Y. BU, A. J. FLEWITT, W. I. MILINE. Nanocrystalline Silicon Thin Films Fabricated at 80 °C by Using Electron Cyclotron Resonance Chemical Vapor Deposition[J]. Plasma Science and Technology, 2010, 12(5): 608-613. |
1. | Svarnas, P.. Electron cyclotron resonance (ECR) plasmas: A topical review through representative results obtained over the last 60 years. Journal of Applied Physics, 2025, 137(7): 070701. DOI:10.1063/5.0249342 |
2. | Zeng, M., Liu, H., Huang, H. et al. Effects of magnetic field strength on the microwave discharge cusped field thruster. Vacuum, 2022. DOI:10.1016/j.vacuum.2022.111504 |
3. | Yuan, X., Zhou, H., Liu, H. et al. Particle flux characteristics of a compact high-field cascaded arc plasma device. Plasma Science and Technology, 2021, 23(11): 115402. DOI:10.1088/2058-6272/ac1fd8 |
4. | Liu, H., Zeng, M., Chen, Z. et al. Electron cyclotron resonance discharge enhancement in a cusped field thruster. Plasma Sources Science and Technology, 2021, 30(9): 09LT01. DOI:10.1088/1361-6595/abaffc |