Advanced Search+
Nimisha SRIVASTAVA, Chuji WANG. Effect of N2 and O2 on OH radical production in an atmospheric helium microwave plasma jet[J]. Plasma Science and Technology, 2019, 21(11): 115401. DOI: 10.1088/2058-6272/ab3248
Citation: Nimisha SRIVASTAVA, Chuji WANG. Effect of N2 and O2 on OH radical production in an atmospheric helium microwave plasma jet[J]. Plasma Science and Technology, 2019, 21(11): 115401. DOI: 10.1088/2058-6272/ab3248

Effect of N2 and O2 on OH radical production in an atmospheric helium microwave plasma jet

Funds: This work is supported by the National Science Foundation through the grant CBET-1066486.
More Information
  • Received Date: May 23, 2019
  • Revised Date: July 09, 2019
  • Accepted Date: July 14, 2019
  • UV-pulsed laser cavity ringdown spectroscopy of the hydroxyl radical OH(A–X) (0–0) band in the wavelength range of 306–310 nm was employed to determine absolute number densities of OH in the atmospheric helium plasma jets generated by a 2.45 GHz microwave plasma source. The effect of the addition of molecular gases N2 and O2 to He plasma jets on OH generation was studied. Optical emission spectroscopy was simultaneously employed to monitor reactive plasma species. Stark broadening of the hydrogen Balmer emission line (Hβ) was used to estimate the electron density ne in the jets. For both He/N2 and He/O2 jets, ne was estimated to be on the order of 1015 cm−3. The effects of plasma power and gas flow rate were also studied. With increase in N2 and O2 flow rates, ne tended to decrease. Gas temperature in the He/O2 plasma jets was elevated compared to the temperatures in the pure He and He/N2 plasma jets. The highest OH densities in the He/N2 and He/O2 plasma jets were determined to be 1.0× 1016 molecules/cm3 at x=4 mm (from the jet orifice) and 1.8×1016 molecules/cm3 at x=3 mm, respectively. Electron impact dissociation of water and water ion dissociative recombination were the dominant reaction pathways, respectively, for OH formation within the jet column and in the downstream and far downstream regions. The presence of strong emissions of the N+2 bands in both He/N2 and He/O2 plasma jets, as against the absence of the N+2 emissions in the Ar plasma jets, suggests that the Penning ionization process is a key reaction channel leading to the formation of N+2 in these He plasma jets.
  • [1]
    Esplugas S, Yue P L and Pervez M I 1994 Water Res. 28 1323
    [2]
    Masten S J and Davies S H R 1994 Environ. Sci. Technol.28 180
    [3]
    Wang C et al 2004 Appl. Spectrosc. 58 734
    [4]
    Wang C 2013 Cavity ringdown spectroscopy of plasma species ed P K Chu and X P Lu Low Temperature Plasma Technology: Methods and Applications (Boca Raton, FL:CRC Press)
    [5]
    Wang C et al 2009 Plasma Sources Sci. Technol. 18 025030
    [6]
    Wang C, Srivastava N and Dibble T S 2009 Appl. Phys. Lett.95 051501
    [7]
    Zhao G et al 2010 Plasma Sci. Technol. 12 166
    [8]
    Srivastava N, Wang C and Dibble T S 2009 Eur. Phys. J. D 54 77
    [9]
    Fuh C A et al 2016 J. Appl. Phys. 120 163303
    [10]
    Attri P et al 2015 Sci. Rep. 5 9332
    [11]
    Lieberman M A and Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing 2nd edn (New York: Wiley)
    [12]
    Jeong J Y et al 1998 Plasma Sources Sci. Technol. 7 282
    [13]
    Starikovskaia S M 2006 J. Phys. D: Appl. Phys. 39 R265
    [14]
    Lu X et al 2009 Appl. Phys. Lett. 95 181501
    [15]
    Lu X P et al 2008 Appl. Phys. Lett. 92 151504
    [16]
    Kong M G et al 2009 New J. Phys. 11 115012
    [17]
    Fridman G et al 2008 Plasma Process. Polym. 5 503
    [18]
    Laroussi M, Lu X and Keidar M 2017 J. Appl. Phys. 122 020901
    [19]
    Adamovich I et al 2017 J. Phys. D: Appl. Phys. 50 323001
    [20]
    Graves D B 2017 IEEE Trans. Radiat. Plasma Med. Sci. 1 281
    [21]
    Ono R and Oda T 2001 IEEE Trans. Ind. Appl. 37 709
    [22]
    Ono R and Oda T 2003 J. Appl. Phys. 93 5876
    [23]
    O’Keefe A and Deacon D A G 1988 Rev. Sci. Instrum. 59 2544
    [24]
    Wang C and Wu W 2014 Combust Flame. 161 2073
    [25]
    Liu D X et al 2010 Plasma Source Sci. Technol. 19 025018
    [26]
    Walsh J L et al 2010 J. Phys. D: Appl. Phys. 43 032001
    [27]
    Martens T et al 2008 Appl. Phys. Lett. 92 041504
    [28]
    Sasaki K, Ishigame H and Nishiyama S 2015 Eur. Phys. J.Appl. Phys. 71 20807
    [29]
    Yue Y, Pei X and Lu X 2016 J. Appl. Phys. 119 033301
    [30]
    Ono R et al 2016 J. Phys. D: Appl. Phys. 49 305401
    [31]
    Yue Y F et al 2018 Plasma Sources Sci. Technol. 27 064001
    [32]
    Wang Z et al 2019 J. Phys. D: Appl. Phys. 52 105203
    [33]
    Srivastava N and Wang C 2011 IEEE Trans. Plasma Sci.39 918
    [34]
    Srivastava N and Wang C 2011 J. Appl. Phys. 110 053304
    [35]
    Wang C and Srivastava N 2010 Eur. Phys. J. D 60 465
    [36]
    Olenici-Craciunescu S B et al 2011 Spectrochim. Acta Part B 66 268
    [37]
    Xiong Q et al 2009 Phys. Plasmas 16 043505
    [38]
    Bruggeman P and Schram D C 2010 Plasma Sources Sci.Technol. 19 045025
    [39]
    Ono R, Teramoto Y and Oda T 2010 Plasma Sources Sci.Technol. 19 015009
    [40]
    Griem H 1974 Spectral Line Broadening by Plasmas (New York: Academic)
    [41]
    Gigosos M A, González M Á and Cardeñoso V 2003 Spectrochim. Acta Part B 58 1489
    [42]
    Vidal C R, Cooper J and Smith E W 1973 Astrophys. J. Suppl.25 37
    [43]
    Laux C O et al 2003 Plasma Sources Sci. Technol. 12 125
    [44]
    Bruggeman P et al 2009 Plasma Sources Sci. Technol. 18 025017
    [45]
    Balcon N, Aanesland A and Boswell R 2007 Plasma Sources Sci. Technol. 16 217
    [46]
    Liu D X et al 2011 Appl. Phys. Lett. 98 221501
    [47]
    Goldman A and Gillis J R 1981 J. Quant. Spectrosc. Radia.Transf. 25 111
    [48]
    Harb T, Kedzierski W and McConkey J W 2001 J. Chem.Phys. 115 5507
    [49]
    Herron J T and Green D S 2001 Plasma Chem. Plasma Proc.21 459
  • Related Articles

    [1]Yang LIU (刘洋), Jiaming SHI (时家明), Li CHENG (程立), Jiachun WANG (汪家春), Zhongcai YUAN (袁忠才), Zongsheng CHEN (陈宗胜). High-power microwave propagation properties in the argon plasma array[J]. Plasma Science and Technology, 2019, 21(1): 15402-015402. DOI: 10.1088/2058-6272/aae369
    [2]N C ROY, M R TALUKDER, A N CHOWDHURY. OH and O radicals production in atmospheric pressure air/Ar/H2O gliding arc discharge plasma jet[J]. Plasma Science and Technology, 2017, 19(12): 125402. DOI: 10.1088/2058-6272/aa86a7
    [3]Jianqiang HU (胡健强), Ahdi LIU (刘阿娣), Chu ZHOU (周楚), Xiaohui ZHANG (张小辉), Mingyuan WANG (王明远), Jin ZHANG (张津), Xi FENG (冯喜), Hong LI (李弘), Jinlin XIE (谢锦林), Wandong LIU (刘万东), Changxuan YU (俞昌旋). An accurate automated technique for quasi-optics measurement of the microwave diagnostics for fusion plasma[J]. Plasma Science and Technology, 2017, 19(8): 84002-084002. DOI: 10.1088/2058-6272/aa6794
    [4]A F POPOVICH, V G RALCHENKO, V K BALLA, A K MALLIK, A A KHOMICH, A P BOLSHAKOV, D N SOVYK, E E ASHKINAZI, V Yu YUROV. Growth of 4″ diameter polycrystalline diamond wafers with high thermal conductivity by 915 MHz microwave plasma chemical vapor deposition[J]. Plasma Science and Technology, 2017, 19(3): 35503-035503. DOI: 10.1088/2058-6272/19/3/035503
    [5]WANG Guibin (王桂滨), ZHANG Lin (张林), HE Feng (何锋), OUYANG Jiting (欧阳吉庭). Numerical Study on Microwave Scattering by Various Plasma Objects[J]. Plasma Science and Technology, 2016, 18(8): 791-797. DOI: 10.1088/1009-0630/18/8/01
    [6]F. MARCHAL, M. YOUSFI, N. MERBAHI, G. WATTIEAUX, A. PIQUEMAL. Quantitative Determination of Density of Ground State Atomic Oxygen from Both TALIF and Emission Spectroscopy in Hot Air Plasma Generated by Microwave Resonant Cavity[J]. Plasma Science and Technology, 2016, 18(3): 259-265. DOI: 10.1088/1009-0630/18/3/08
    [7]FU Wenjie (傅文杰), YAN Yang (鄢扬). Analysis of High-Power Microwave Propagation in a Magnetized Plasma Filled Waveguide[J]. Plasma Science and Technology, 2013, 15(10): 974-978. DOI: 10.1088/1009-0630/15/10/03
    [8]ZHANG Wenbo (张文波), WANG Shenggao (王升高), XU Chuanbo (许传波), XU Kaiwei (徐开伟), WANG Mingyang (王明洋), WANG Jianhua (汪建华), HUANG Zhiliang (黄志良), WANG Chuanxin (王传新). Reduction of Ilmenite Through Microwave Plasma[J]. Plasma Science and Technology, 2013, 15(5): 465-468. DOI: 10.1088/1009-0630/15/5/14
    [9]PANG Jianhua (庞见华), LU Wenqi (陆文琪), XIN Yu (辛煜), WANG Hanghang (王行行), HE Jia (贺佳), XU Jun (徐军). Plasma Diagnosis for Microwave ECR Plasma Enhanced Sputtering Deposition of DLC Films[J]. Plasma Science and Technology, 2012, 14(2): 172-176. DOI: 10.1088/1009-0630/14/2/17
    [10]RU Lili (汝丽丽), HUANG Jianjun (黄建军), GAO Liang (高亮), QI Bing (齐冰). Influence of Microwave Power on the Properties of Hydrogenated Diamond-Like Carbon Films Prepared by ECR Plasma Enhanced DC Magnetron Sputtering[J]. Plasma Science and Technology, 2010, 12(5): 551-555.

Catalog

    Article views (287) PDF downloads (315) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return