Advanced Search+
Nimisha SRIVASTAVA, Chuji WANG. Effect of N2 and O2 on OH radical production in an atmospheric helium microwave plasma jet[J]. Plasma Science and Technology, 2019, 21(11): 115401. DOI: 10.1088/2058-6272/ab3248
Citation: Nimisha SRIVASTAVA, Chuji WANG. Effect of N2 and O2 on OH radical production in an atmospheric helium microwave plasma jet[J]. Plasma Science and Technology, 2019, 21(11): 115401. DOI: 10.1088/2058-6272/ab3248

Effect of N2 and O2 on OH radical production in an atmospheric helium microwave plasma jet

Funds: This work is supported by the National Science Foundation through the grant CBET-1066486.
More Information
  • Received Date: May 23, 2019
  • Revised Date: July 09, 2019
  • Accepted Date: July 14, 2019
  • UV-pulsed laser cavity ringdown spectroscopy of the hydroxyl radical OH(A–X) (0–0) band in the wavelength range of 306–310 nm was employed to determine absolute number densities of OH in the atmospheric helium plasma jets generated by a 2.45 GHz microwave plasma source. The effect of the addition of molecular gases N2 and O2 to He plasma jets on OH generation was studied. Optical emission spectroscopy was simultaneously employed to monitor reactive plasma species. Stark broadening of the hydrogen Balmer emission line (Hβ) was used to estimate the electron density ne in the jets. For both He/N2 and He/O2 jets, ne was estimated to be on the order of 1015 cm−3. The effects of plasma power and gas flow rate were also studied. With increase in N2 and O2 flow rates, ne tended to decrease. Gas temperature in the He/O2 plasma jets was elevated compared to the temperatures in the pure He and He/N2 plasma jets. The highest OH densities in the He/N2 and He/O2 plasma jets were determined to be 1.0× 1016 molecules/cm3 at x=4 mm (from the jet orifice) and 1.8×1016 molecules/cm3 at x=3 mm, respectively. Electron impact dissociation of water and water ion dissociative recombination were the dominant reaction pathways, respectively, for OH formation within the jet column and in the downstream and far downstream regions. The presence of strong emissions of the N+2 bands in both He/N2 and He/O2 plasma jets, as against the absence of the N+2 emissions in the Ar plasma jets, suggests that the Penning ionization process is a key reaction channel leading to the formation of N+2 in these He plasma jets.
  • [1]
    Esplugas S, Yue P L and Pervez M I 1994 Water Res. 28 1323
    [2]
    Masten S J and Davies S H R 1994 Environ. Sci. Technol.28 180
    [3]
    Wang C et al 2004 Appl. Spectrosc. 58 734
    [4]
    Wang C 2013 Cavity ringdown spectroscopy of plasma species ed P K Chu and X P Lu Low Temperature Plasma Technology: Methods and Applications (Boca Raton, FL:CRC Press)
    [5]
    Wang C et al 2009 Plasma Sources Sci. Technol. 18 025030
    [6]
    Wang C, Srivastava N and Dibble T S 2009 Appl. Phys. Lett.95 051501
    [7]
    Zhao G et al 2010 Plasma Sci. Technol. 12 166
    [8]
    Srivastava N, Wang C and Dibble T S 2009 Eur. Phys. J. D 54 77
    [9]
    Fuh C A et al 2016 J. Appl. Phys. 120 163303
    [10]
    Attri P et al 2015 Sci. Rep. 5 9332
    [11]
    Lieberman M A and Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing 2nd edn (New York: Wiley)
    [12]
    Jeong J Y et al 1998 Plasma Sources Sci. Technol. 7 282
    [13]
    Starikovskaia S M 2006 J. Phys. D: Appl. Phys. 39 R265
    [14]
    Lu X et al 2009 Appl. Phys. Lett. 95 181501
    [15]
    Lu X P et al 2008 Appl. Phys. Lett. 92 151504
    [16]
    Kong M G et al 2009 New J. Phys. 11 115012
    [17]
    Fridman G et al 2008 Plasma Process. Polym. 5 503
    [18]
    Laroussi M, Lu X and Keidar M 2017 J. Appl. Phys. 122 020901
    [19]
    Adamovich I et al 2017 J. Phys. D: Appl. Phys. 50 323001
    [20]
    Graves D B 2017 IEEE Trans. Radiat. Plasma Med. Sci. 1 281
    [21]
    Ono R and Oda T 2001 IEEE Trans. Ind. Appl. 37 709
    [22]
    Ono R and Oda T 2003 J. Appl. Phys. 93 5876
    [23]
    O’Keefe A and Deacon D A G 1988 Rev. Sci. Instrum. 59 2544
    [24]
    Wang C and Wu W 2014 Combust Flame. 161 2073
    [25]
    Liu D X et al 2010 Plasma Source Sci. Technol. 19 025018
    [26]
    Walsh J L et al 2010 J. Phys. D: Appl. Phys. 43 032001
    [27]
    Martens T et al 2008 Appl. Phys. Lett. 92 041504
    [28]
    Sasaki K, Ishigame H and Nishiyama S 2015 Eur. Phys. J.Appl. Phys. 71 20807
    [29]
    Yue Y, Pei X and Lu X 2016 J. Appl. Phys. 119 033301
    [30]
    Ono R et al 2016 J. Phys. D: Appl. Phys. 49 305401
    [31]
    Yue Y F et al 2018 Plasma Sources Sci. Technol. 27 064001
    [32]
    Wang Z et al 2019 J. Phys. D: Appl. Phys. 52 105203
    [33]
    Srivastava N and Wang C 2011 IEEE Trans. Plasma Sci.39 918
    [34]
    Srivastava N and Wang C 2011 J. Appl. Phys. 110 053304
    [35]
    Wang C and Srivastava N 2010 Eur. Phys. J. D 60 465
    [36]
    Olenici-Craciunescu S B et al 2011 Spectrochim. Acta Part B 66 268
    [37]
    Xiong Q et al 2009 Phys. Plasmas 16 043505
    [38]
    Bruggeman P and Schram D C 2010 Plasma Sources Sci.Technol. 19 045025
    [39]
    Ono R, Teramoto Y and Oda T 2010 Plasma Sources Sci.Technol. 19 015009
    [40]
    Griem H 1974 Spectral Line Broadening by Plasmas (New York: Academic)
    [41]
    Gigosos M A, González M Á and Cardeñoso V 2003 Spectrochim. Acta Part B 58 1489
    [42]
    Vidal C R, Cooper J and Smith E W 1973 Astrophys. J. Suppl.25 37
    [43]
    Laux C O et al 2003 Plasma Sources Sci. Technol. 12 125
    [44]
    Bruggeman P et al 2009 Plasma Sources Sci. Technol. 18 025017
    [45]
    Balcon N, Aanesland A and Boswell R 2007 Plasma Sources Sci. Technol. 16 217
    [46]
    Liu D X et al 2011 Appl. Phys. Lett. 98 221501
    [47]
    Goldman A and Gillis J R 1981 J. Quant. Spectrosc. Radia.Transf. 25 111
    [48]
    Harb T, Kedzierski W and McConkey J W 2001 J. Chem.Phys. 115 5507
    [49]
    Herron J T and Green D S 2001 Plasma Chem. Plasma Proc.21 459
  • Related Articles

    [1]Zhongzheng LI (李中正), Juanfang HAN (韩娟芳), FangpingWANG (王芳平), Zhengwu CHEN (陈正武), Wenshan DUAN (段文山). Investigation of the fast magnetosonic wave excited by the Alfvén wave phase mixing by using the Hall–MHD model in inhomogeneous plasma[J]. Plasma Science and Technology, 2021, 23(3): 35003-035003. DOI: 10.1088/2058-6272/abe10b
    [2]Liang HAN (韩亮), Jun GAO (高俊), Tao CHEN (陈涛), Yuntian CONG (丛云天), Zongliang LI (李宗良). A method to measure the in situ magnetic field in a Hall thruster based on the Faraday rotation effect[J]. Plasma Science and Technology, 2019, 21(8): 85502-085502. DOI: 10.1088/2058-6272/ab0f63
    [3]Hong LI (李鸿), Xingyu LIU (刘星宇), Zhiyong GAO (高志勇), Yongjie DING (丁永杰), Liqiu WEI (魏立秋), Daren YU (于达仁), Xiaogang WANG (王晓钢). Particle-in-cell simulation for effect of anode temperature on discharge characteristics of a Hall effect thruster[J]. Plasma Science and Technology, 2018, 20(12): 125504. DOI: 10.1088/2058-6272/aaddf2
    [4]Liqiu WEI (魏立秋), Wenbo LI (李文博), Yongjie DING (丁永杰), Daren YU (于达仁). Effect of low-frequency oscillation on performance of Hall thrusters[J]. Plasma Science and Technology, 2018, 20(7): 75502-075502. DOI: 10.1088/2058-6272/aabae0
    [5]Yongjie DING (丁永杰), Hong LI (李鸿), Boyang JIA (贾伯阳), PengLI (李朋), Liqiu WEI (魏立秋), YuXU (徐宇), Wuji PENG (彭武吉), Hezhi SUN (孙鹤芝), Yong CAO (曹勇), Daren YU (于达仁). Simulation of the effect of a magnetically insulated anode on a low-power cylindrical Hall thruster[J]. Plasma Science and Technology, 2018, 20(3): 35509-035509. DOI: 10.1088/2058-6272/aa9fe7
    [6]CHANG Lei (苌磊), LI Qingchong (李庆冲), ZHANG Huijie (张辉洁), LI Yinghong (李应红), WU Yun (吴云), ZHANG Bailing (张百灵), ZHUANG Zhong (庄重). Effect of Radial Density Configuration on Wave Field and Energy Flow in Axially Uniform Helicon Plasma[J]. Plasma Science and Technology, 2016, 18(8): 848-854. DOI: 10.1088/1009-0630/18/8/10
    [7]DUAN Ping (段萍), BIAN Xingyu (边兴宇), CAO Anning (曹安宁), LIU Guangrui (刘广睿), CHEN Long (陈龙), YIN Yan (殷燕). Effect of Segmented Electrode Length on the Performances of an Aton-Type Hall Thruster[J]. Plasma Science and Technology, 2016, 18(5): 525-530. DOI: 10.1088/1009-0630/18/5/14
    [8]DUAN Ping (段萍), LIU Guangrui (刘广睿), BIAN Xingyu (边兴宇), CHEN Long (陈龙), YIN Yan (殷燕), CAO Anning (曹安宁). Effect of the Discharge Voltage on the Performance of the Hall Thruster[J]. Plasma Science and Technology, 2016, 18(4): 382-387. DOI: 10.1088/1009-0630/18/4/09
    [9]K. Ogawa, M. Isobe, K. Toi, F. Watanabe, D. A. Spong, A. Shimizu, M. Osakabe, D. S. Darrow, S. Ohdachi, S. Sakakibara, LHD Experiment Group. Magnetic Configuration Effects on Fast Ion Losses Induced by Fast Ion Driven Toroidal Alfvén Eigenmodes in the Large Helical Device[J]. Plasma Science and Technology, 2012, 14(4): 269-272. DOI: 10.1088/1009-0630/14/4/01
    [10]LIU Xun (刘勋), LI Yutong (李玉同), ZHONG Jiayong (仲佳勇), DONG Quanli (董全力), WANG Shoujun (王首钧), ZHANG Lei (张蕾), ZHU Jianqiang (朱健强), ZHAO Gang (赵刚), ZHANG Jie (张杰). Characteristics of Plasma Jets in Laser-Driven Magnetic Reconnection[J]. Plasma Science and Technology, 2012, 14(2): 97-101. DOI: 10.1088/1009-0630/14/2/03

Catalog

    Article views (287) PDF downloads (315) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return