Advanced Search+
Nimisha SRIVASTAVA, Chuji WANG. Effect of N2 and O2 on OH radical production in an atmospheric helium microwave plasma jet[J]. Plasma Science and Technology, 2019, 21(11): 115401. DOI: 10.1088/2058-6272/ab3248
Citation: Nimisha SRIVASTAVA, Chuji WANG. Effect of N2 and O2 on OH radical production in an atmospheric helium microwave plasma jet[J]. Plasma Science and Technology, 2019, 21(11): 115401. DOI: 10.1088/2058-6272/ab3248

Effect of N2 and O2 on OH radical production in an atmospheric helium microwave plasma jet

Funds: This work is supported by the National Science Foundation through the grant CBET-1066486.
More Information
  • Received Date: May 23, 2019
  • Revised Date: July 09, 2019
  • Accepted Date: July 14, 2019
  • UV-pulsed laser cavity ringdown spectroscopy of the hydroxyl radical OH(A–X) (0–0) band in the wavelength range of 306–310 nm was employed to determine absolute number densities of OH in the atmospheric helium plasma jets generated by a 2.45 GHz microwave plasma source. The effect of the addition of molecular gases N2 and O2 to He plasma jets on OH generation was studied. Optical emission spectroscopy was simultaneously employed to monitor reactive plasma species. Stark broadening of the hydrogen Balmer emission line (Hβ) was used to estimate the electron density ne in the jets. For both He/N2 and He/O2 jets, ne was estimated to be on the order of 1015 cm−3. The effects of plasma power and gas flow rate were also studied. With increase in N2 and O2 flow rates, ne tended to decrease. Gas temperature in the He/O2 plasma jets was elevated compared to the temperatures in the pure He and He/N2 plasma jets. The highest OH densities in the He/N2 and He/O2 plasma jets were determined to be 1.0× 1016 molecules/cm3 at x=4 mm (from the jet orifice) and 1.8×1016 molecules/cm3 at x=3 mm, respectively. Electron impact dissociation of water and water ion dissociative recombination were the dominant reaction pathways, respectively, for OH formation within the jet column and in the downstream and far downstream regions. The presence of strong emissions of the N+2 bands in both He/N2 and He/O2 plasma jets, as against the absence of the N+2 emissions in the Ar plasma jets, suggests that the Penning ionization process is a key reaction channel leading to the formation of N+2 in these He plasma jets.
  • [1]
    Esplugas S, Yue P L and Pervez M I 1994 Water Res. 28 1323
    [2]
    Masten S J and Davies S H R 1994 Environ. Sci. Technol.28 180
    [3]
    Wang C et al 2004 Appl. Spectrosc. 58 734
    [4]
    Wang C 2013 Cavity ringdown spectroscopy of plasma species ed P K Chu and X P Lu Low Temperature Plasma Technology: Methods and Applications (Boca Raton, FL:CRC Press)
    [5]
    Wang C et al 2009 Plasma Sources Sci. Technol. 18 025030
    [6]
    Wang C, Srivastava N and Dibble T S 2009 Appl. Phys. Lett.95 051501
    [7]
    Zhao G et al 2010 Plasma Sci. Technol. 12 166
    [8]
    Srivastava N, Wang C and Dibble T S 2009 Eur. Phys. J. D 54 77
    [9]
    Fuh C A et al 2016 J. Appl. Phys. 120 163303
    [10]
    Attri P et al 2015 Sci. Rep. 5 9332
    [11]
    Lieberman M A and Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing 2nd edn (New York: Wiley)
    [12]
    Jeong J Y et al 1998 Plasma Sources Sci. Technol. 7 282
    [13]
    Starikovskaia S M 2006 J. Phys. D: Appl. Phys. 39 R265
    [14]
    Lu X et al 2009 Appl. Phys. Lett. 95 181501
    [15]
    Lu X P et al 2008 Appl. Phys. Lett. 92 151504
    [16]
    Kong M G et al 2009 New J. Phys. 11 115012
    [17]
    Fridman G et al 2008 Plasma Process. Polym. 5 503
    [18]
    Laroussi M, Lu X and Keidar M 2017 J. Appl. Phys. 122 020901
    [19]
    Adamovich I et al 2017 J. Phys. D: Appl. Phys. 50 323001
    [20]
    Graves D B 2017 IEEE Trans. Radiat. Plasma Med. Sci. 1 281
    [21]
    Ono R and Oda T 2001 IEEE Trans. Ind. Appl. 37 709
    [22]
    Ono R and Oda T 2003 J. Appl. Phys. 93 5876
    [23]
    O’Keefe A and Deacon D A G 1988 Rev. Sci. Instrum. 59 2544
    [24]
    Wang C and Wu W 2014 Combust Flame. 161 2073
    [25]
    Liu D X et al 2010 Plasma Source Sci. Technol. 19 025018
    [26]
    Walsh J L et al 2010 J. Phys. D: Appl. Phys. 43 032001
    [27]
    Martens T et al 2008 Appl. Phys. Lett. 92 041504
    [28]
    Sasaki K, Ishigame H and Nishiyama S 2015 Eur. Phys. J.Appl. Phys. 71 20807
    [29]
    Yue Y, Pei X and Lu X 2016 J. Appl. Phys. 119 033301
    [30]
    Ono R et al 2016 J. Phys. D: Appl. Phys. 49 305401
    [31]
    Yue Y F et al 2018 Plasma Sources Sci. Technol. 27 064001
    [32]
    Wang Z et al 2019 J. Phys. D: Appl. Phys. 52 105203
    [33]
    Srivastava N and Wang C 2011 IEEE Trans. Plasma Sci.39 918
    [34]
    Srivastava N and Wang C 2011 J. Appl. Phys. 110 053304
    [35]
    Wang C and Srivastava N 2010 Eur. Phys. J. D 60 465
    [36]
    Olenici-Craciunescu S B et al 2011 Spectrochim. Acta Part B 66 268
    [37]
    Xiong Q et al 2009 Phys. Plasmas 16 043505
    [38]
    Bruggeman P and Schram D C 2010 Plasma Sources Sci.Technol. 19 045025
    [39]
    Ono R, Teramoto Y and Oda T 2010 Plasma Sources Sci.Technol. 19 015009
    [40]
    Griem H 1974 Spectral Line Broadening by Plasmas (New York: Academic)
    [41]
    Gigosos M A, González M Á and Cardeñoso V 2003 Spectrochim. Acta Part B 58 1489
    [42]
    Vidal C R, Cooper J and Smith E W 1973 Astrophys. J. Suppl.25 37
    [43]
    Laux C O et al 2003 Plasma Sources Sci. Technol. 12 125
    [44]
    Bruggeman P et al 2009 Plasma Sources Sci. Technol. 18 025017
    [45]
    Balcon N, Aanesland A and Boswell R 2007 Plasma Sources Sci. Technol. 16 217
    [46]
    Liu D X et al 2011 Appl. Phys. Lett. 98 221501
    [47]
    Goldman A and Gillis J R 1981 J. Quant. Spectrosc. Radia.Transf. 25 111
    [48]
    Harb T, Kedzierski W and McConkey J W 2001 J. Chem.Phys. 115 5507
    [49]
    Herron J T and Green D S 2001 Plasma Chem. Plasma Proc.21 459
  • Related Articles

    [1]N C ROY, M M HASAN, A H KABIR, M A REZA, M R TALUKDER, A N CHOWDHURY. Atmospheric pressure gliding arc discharge plasma treatments for improving germination, growth and yield of wheat[J]. Plasma Science and Technology, 2018, 20(11): 115501. DOI: 10.1088/2058-6272/aac647
    [2]Jiafeng JIANG (蒋佳峰), Jiangang LI (李建刚), Yuanhua DONG (董元华). Effect of cold plasma treatment on seedling growth and nutrient absorption of tomato[J]. Plasma Science and Technology, 2018, 20(4): 44007-044007. DOI: 10.1088/2058-6272/aaa0bf
    [3]DI Lanbo (底兰波), ZHAN Zhibin (詹志彬), ZHANG Xiuling (张秀玲), QI Bin (亓滨), XU Weijie (徐伟杰). Atmospheric-Pressure DBD Cold Plasma for Preparation of High Active Au/P25 Catalysts for Low-Temperature CO Oxidation[J]. Plasma Science and Technology, 2016, 18(5): 544-548. DOI: 10.1088/1009-0630/18/5/17
    [4]ZHAN Zhibin (詹志彬), DI Lanbo (底兰波), ZHANG Xiuling (张秀玲), LI Yanchun (李燕春). Synthesis of Cu-Doped Mixed-Phase TiO2 with the Assistance of Ionic Liquid by Atmospheric-Pressure Cold Plasma[J]. Plasma Science and Technology, 2016, 18(5): 494-499. DOI: 10.1088/1009-0630/18/5/09
    [5]TONG Jiayun(童家赟), HE Rui(何瑞), ZHANG Xiaoli(张晓丽), ZHAN Ruoting(詹若挺), CHEN Weiwen(陈蔚文), YANG Size(杨思泽). Effects of Atmospheric Pressure Air Plasma Pretreatment on the Seed Germination and Early Growth of Andrographis paniculata[J]. Plasma Science and Technology, 2014, 16(3): 260-266. DOI: 10.1088/1009-0630/16/3/16
    [6]JIANG Jiafeng(蒋佳峰), HE Xin(何昕), LI Ling(李玲), LI Jiangang(李建刚), SHAO Hanliang(邵汉良), XU Qilai(徐启来), YE Renhong(叶仁宏), DONG Yuanhua(董元华). Effect of Cold Plasma Treatment on Seed Germination and Growth of Wheat[J]. Plasma Science and Technology, 2014, 16(1): 54-58. DOI: 10.1088/1009-0630/16/1/12
    [7]FEI Xiaomeng (费小猛), Shin-ichi KURODA, Tamio MORI, Katsuhiko HOSOI. High-Density Polyethylene (HDPE) Surface Treatment Using an RF Capacitive Atmospheric Pressure Cold Ar Plasma Jet[J]. Plasma Science and Technology, 2013, 15(6): 577-581. DOI: 10.1088/1009-0630/15/6/16
    [8]F. JAN, A. W. KHAN, A. SAEED, M. ZAKAULLAH. Comparative Study of Plasma Parameters in Magnetic Pole Enhanced Inductively Coupled Argon Plasmas[J]. Plasma Science and Technology, 2013, 15(4): 329-334. DOI: 10.1088/1009-0630/15/4/05
    [9]DI Lanbo, LI Xiaosong, ZHAO Tianliang, CHANG Dalei, LIU Qianqian, ZHU Aimin. Tuning Effect of N2 on Atmospheric-Pressure Cold Plasma CVD of TiO2 Photocatalytic Films[J]. Plasma Science and Technology, 2013, 15(1): 64-69. DOI: 10.1088/1009-0630/15/1/11
    [10]QIAN Muyang(钱沐杨), REN Chunsheng(任春生), WANG Dezhen(王德真), FENG Yan(冯岩), ZHANG Jialiang(张家良). Atmospheric Pressure Cold Argon/Oxygen Plasma Jet Assisted by Preionization of Syringe Needle Electrode[J]. Plasma Science and Technology, 2010, 12(5): 561-565.
  • Cited by

    Periodical cited type(12)

    1. Li, L., Zhang, L., Dong, Y. Seed priming with cold plasma mitigated the negative influence of drought stress on growth and yield of rapeseed (Brassica napus L.). Industrial Crops and Products, 2025. DOI:10.1016/j.indcrop.2025.120899
    2. Kamseu-Mogo, J.-P., Soulier, M., Kamgang-Youbi, G. et al. Advancements in maize cultivation: synergistic effects of dry atmospheric plasma combined with plasma-activated water. Journal of Physics D: Applied Physics, 2025, 58(5): 055201. DOI:10.1088/1361-6463/ad8acf
    3. Bai, R., Lan, C., Liu, D. et al. Revolutionizing Sustainable Agriculture: The Role of Atmospheric Pressure Plasma in Enhancing Plant Growth and Resilience. IEEE Transactions on Plasma Science, 2025. DOI:10.1109/TPS.2025.3543353
    4. Porcher, A., Duffour, E., Perisse, F. et al. Rapid changes in stress-related gene expression after short exposure of Arabidopsis leaves to cold plasma. Journal of Plant Physiology, 2025. DOI:10.1016/j.jplph.2024.154397
    5. Beak, H.K., Priatama, R.A., Han, S.-I. et al. Biomass enhancement and activation of transcriptional regulation in sorghum seedling by plasma-activated water. Frontiers in Plant Science, 2024. DOI:10.3389/fpls.2024.1488583
    6. Marček, T., Hamow, K.Á., Janda, T. et al. Effects of High Voltage Electrical Discharge (HVED) on Endogenous Hormone and Polyphenol Profile in Wheat. Plants, 2023, 12(6): 1235. DOI:10.3390/plants12061235
    7. Tan, Y., Duan, Y., Chi, Q. et al. The Role of Reactive Oxygen Species in Plant Response to Radiation. International Journal of Molecular Sciences, 2023, 24(4): 3346. DOI:10.3390/ijms24043346
    8. Waskow, A., Guihur, A., Howling, A. et al. Catabolism of Glucosinolates into Nitriles Revealed by RNA Sequencing of Arabidopsis thaliana Seedlings after Non-Thermal Plasma-Seed Treatment. Life, 2022, 12(11): 1822. DOI:10.3390/life12111822
    9. Cui, D., Yin, Y., Sun, H. et al. Regulation of cellular redox homeostasis in Arabidopsis thaliana seedling by atmospheric pressure cold plasma-generated reactive oxygen/nitrogen species. Ecotoxicology and Environmental Safety, 2022. DOI:10.1016/j.ecoenv.2022.113703
    10. Priatama, R.A., Pervitasari, A.N., Park, S. et al. Current Advancements in the Molecular Mechanism of Plasma Treatment for Seed Germination and Plant Growth. International Journal of Molecular Sciences, 2022, 23(9): 4609. DOI:10.3390/ijms23094609
    11. Mildaziene, V., Ivankov, A., Sera, B. et al. Biochemical and Physiological Plant Processes Affected by Seed Treatment with Non-Thermal Plasma. Plants, 2022, 11(7): 856. DOI:10.3390/plants11070856
    12. Waskow, A., Guihur, A., Howling, A. et al. RNA Sequencing of Arabidopsis thaliana Seedlings after Non-Thermal Plasma-Seed Treatment Reveals Upregulation in Plant Stress and Defense Pathways. International Journal of Molecular Sciences, 2022, 23(6): 3070. DOI:10.3390/ijms23063070

    Other cited types(0)

Catalog

    Article views (287) PDF downloads (315) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return