Advanced Search+
Yang LI (李阳), Shaodi FAN (范韶迪), Yi WU (吴翊), Hao SUN (孙昊), Haodong CHANG (畅浩栋), Luqi LIANG (梁璐奇), Weiping GUAN (官玮平). Measurement of radial temperature distributions of the blown CO2 arcs under different conditions[J]. Plasma Science and Technology, 2019, 21(12): 125405. DOI: 10.1088/2058-6272/ab40da
Citation: Yang LI (李阳), Shaodi FAN (范韶迪), Yi WU (吴翊), Hao SUN (孙昊), Haodong CHANG (畅浩栋), Luqi LIANG (梁璐奇), Weiping GUAN (官玮平). Measurement of radial temperature distributions of the blown CO2 arcs under different conditions[J]. Plasma Science and Technology, 2019, 21(12): 125405. DOI: 10.1088/2058-6272/ab40da

Measurement of radial temperature distributions of the blown CO2 arcs under different conditions

Funds: This work was supported by National Natural Science Foundation of China (Nos. 51577145, 51707144 and 51877165), the Key Research and Development Program of Shaanxi Province (No. 2018ZDXM-GY-112) and the State Key Laboratory of Electrical Insulation and Power Equipment (No. EIPE19302).
More Information
  • Received Date: May 08, 2019
  • Revised Date: August 29, 2019
  • Accepted Date: September 02, 2019
  • In this paper, the radial temperature distributions of the blown CO2 arcs in a model gas circuit breaker were investigated by optical emission spectroscopy methods. The CO2 flows with different flow rates (50, 100 and 150 l min−1) were created to axially blow the arcs burning in a polymethyl methacrylate (PMMA) nozzle. Discharges with different arc currents (200 and 400 A) were conducted in the experiment. The absolute intensity method was applied for a carbon ionic line of 657.8 nm to obtain the radial temperature profiles of the arc columns at a cross-section 1 mm above the nozzle. The calibration for the intensity of the C II 657.8 nm line was achieved by the Fowler–Milne method with the help of an oxygen atomic line of 777.2 nm. The highest temperature obtained in the arc center was up to 19 900 K when the arc current was 400 A and the CO2 flow rate was 50 l min−1, while the lowest temperature in the arc center was about 15 900 K when the arc current was 200 A and the CO2 flow rate was 150 l min−1. The results indicate that as the arc current increases, the temperature in the arc center would also increase apparently, and a larger gas flow rate would lead to a lower central temperature in general. It can also be found that the influence of the CO2 flow rate on the arc temperature was much less than that of the arc current under the present experimental conditions. In addition, higher temperature in the arc center would cause a sharper temperature decrease from the central region towards the edge.
  • [1]
    Sun H et al 2015 J. Phys. D: Appl. Phys. 48 055201
    [2]
    Guo Z et al 2019 IEEE Trans. Plasma Sci. 47 2742
    [3]
    Widger P, Griffiths H and Haddad A 2018 IEEE Trans.Dielectr. Electr. Insul. 25 330
    [4]
    Zhao X L, Yan J D and Xiao D M 2018 Plasma Sci. Technol.20 085404
    [5]
    Stoller P C et al 2017 IEEE Trans. Dielectr. Electr. Insul.24 2712
    [6]
    Deng Y K, Li B and Xiao D M 2015 IEEE Trans. Dielectr.Electr. Insul. 22 3253
    [7]
    Okubo H and Beroual A 2011 IEEE Electr. Insul. Mag. 27 34
    [8]
    Kozakov R et al 2007 J. Phys. D: Appl. Phys. 40 2499
    [9]
    Bai S et al 2018 IEEE Trans. Plasma Sci. 46 2120
    [10]
    Takeuchi M and Kubono T 2000 IEEE Trans. Plasma Sci.28 991
    [11]
    Ma S L et al 2011 J. Phys. D: Appl. Phys. 44 405202
    [12]
    Xiao X, Hua X M and Wu Y X 2015 Opt. Laser Technol.66 138
    [13]
    Thomas J, Chaffey G P and Franck C M 2017 IEEE Trans.Compon. Pack. Manuf. Technol. 7 1058
    [14]
    Panousis E, Bujotzek M and Christen T 2014 IEEE Trans.Power Deliv. 29 1806
    [15]
    Vilarinho L O and Scotti A 2004 J. Braz. Soc. Mech. Sci. Eng.26 34
    [16]
    Bockasten K 1961 J. Opt. Soc. Am. 51 943
    [17]
    Kramida A 2018 NIST atomic spectra database: NIST standard reference database 78 (https://doi.org/10.18434/T4W30F) (Accessed: 5 August 2019)
    [18]
    Wu Y et al 2016 J. Phys. D: Appl. Phys. 49 405203
    [19]
    Murphy A B 1994 Rev. Sci. Instrum. 65 3423
    [20]
    Bachmann B et al 2013 J. Phys. D: Appl. Phys. 46 125203
    [21]
    Pokrzywka B et al 1996 J. Phys. D: Appl. Phys. 29 2644
  • Related Articles

    [1]Longfei JING (景龙飞), Shaoen JIANG (江少恩), Longyu KUANG (况龙钰), Lu ZHANG (张璐), Jianhua ZHENG (郑建华), Liling LI (李丽灵), Zhiwei LIN (林雉伟), Hang LI (黎航), Tianxuan HUANG (黄天晅), Yunbao HUANG (黄运保). An improved view-factor method including plasma filling for angular distribution of radiation temperature from a laser-driven hohlraum[J]. Plasma Science and Technology, 2020, 22(10): 105202. DOI: 10.1088/2058-6272/ab9a25
    [2]Yan WANG (王艳), Zhimin LIU (刘智民), Lizhen LIANG (梁立振), Chundong HU (胡纯栋). Preliminary results of optical emission spectroscopy by line ratio method in the RF negative ion source at ASIPP[J]. Plasma Science and Technology, 2019, 21(4): 45601-045601. DOI: 10.1088/2058-6272/aaf592
    [3]Satoshi NODOMI, Shuichi SATO, Mikio OHUCHI. Electron Temperature Measurement by Floating Probe Method Using AC Voltage[J]. Plasma Science and Technology, 2016, 18(11): 1089-1094. DOI: 10.1088/1009-0630/18/11/06
    [4]LAN Hui (兰慧), WANG Xinbing (王新兵), ZUO Duluo (左都罗). Time-Resolved Optical Emission Spectroscopy Diagnosis of CO2 Laser-Produced SnO2 Plasma[J]. Plasma Science and Technology, 2016, 18(9): 902-906. DOI: 10.1088/1009-0630/18/9/05
    [5]MA Jun (马骏), QIN Hong (秦宏), YU Zhi (于治), LI Dehui (李德徽). Nonlinear Simulations of Coalescence Instability Using a Flux Difference Splitting Method[J]. Plasma Science and Technology, 2016, 18(7): 714-719. DOI: 10.1088/1009-0630/18/7/03
    [6]WAN Gang (弯港), JIN Yong (金涌), LI Haiyuan (李海元), LI Baoming (栗保明). Study on Free Surface and Channel Flow Induced by Low-Temperature Plasma via Lattice Boltzmann Method[J]. Plasma Science and Technology, 2016, 18(3): 331-336. DOI: 10.1088/1009-0630/18/3/19
    [7]Panagiotis SVARNAS. Vibrational Temperature of Excited Nitrogen Molecules Detected in a 13.56 MHz Electrical Discharge by Sheath-Side Optical Emission Spectroscopy[J]. Plasma Science and Technology, 2013, 15(9): 891-895. DOI: 10.1088/1009-0630/15/9/11
    [8]LI Hui (李辉), XIE Mingfeng (谢铭丰). Plasma Parameters of a Gliding Arc Jet at Atmospheric Pressure Obtained by a Line-Ratio Method[J]. Plasma Science and Technology, 2013, 15(8): 776-779. DOI: 10.1088/1009-0630/15/8/11
    [9]WU Yongle (吴永乐), LIANG Juncheng (梁珺成), LIU Jiacheng (柳加成), XIONG Wenjun (熊文俊), YAO Shunhe (姚顺和), GUO Xiaoqing (郭晓清), CHEN Xilin (陈细林), YANG Yuandi (杨元第), YUAN Daqing(袁大庆). Standardization of tritium water by TDCR method[J]. Plasma Science and Technology, 2012, 14(7): 644-646. DOI: 10.1088/1009-0630/14/7/17
    [10]Wu Di (吴迪), Lei Ming Kai (雷明凯), Zhu Xiao Peng (朱小鹏), Gong Ye (宫野). Numerical Study on the Two-Dimensional Temperature Fields of Titanium/Aluminum Double-Layer Target Irradiated by High-Intensity Pulsed Ion Beam[J]. Plasma Science and Technology, 2010, 12(5): 581-584.
  • Cited by

    Periodical cited type(5)

    1. Engelbrecht, J.T., Kumari, D., Franck, C.M. Optical characterization of actively cooled switching arcs in SF6 alternatives. Journal of Physics D: Applied Physics, 2025, 58(10): 105210. DOI:10.1088/1361-6463/ada450
    2. Becerra, M., Nilsson, J., Franke, S. et al. Spectral and electric diagnostics of low-current arc plasmas in CO2 with N2 and H2O admixtures. Journal of Physics D: Applied Physics, 2024, 57(1): 015202. DOI:10.1088/1361-6463/acfcc6
    3. Wang, K., Zhao, D., Deng, J. et al. Diagnostics of Post-Arc Electron Number Density in a Model Circuit Breaker. 2024. DOI:10.1109/ICEPE-ST61894.2024.10792550
    4. Yan, J.D., Zhang, K., Cao, R. et al. A Ranking Algorithm for the Thermal Interruption Ability of Potential SF6 Alternative Gases. IEEE Transactions on Power Delivery, 2024. DOI:10.1109/TPWRD.2024.3518603
    5. Cui, Y., Wu, Y., Niu, C. et al. Evolution of anodic erosion components and heat transfer efficiency for W and W80Ag20in atmospheric-pressure arcs. Journal of Physics D: Applied Physics, 2020, 53(47): 475203. DOI:10.1088/1361-6463/ababcf

    Other cited types(0)

Catalog

    Article views (141) PDF downloads (155) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return