Advanced Search+
MA Jun (马骏), QIN Hong (秦宏), YU Zhi (于治), LI Dehui (李德徽). Nonlinear Simulations of Coalescence Instability Using a Flux Difference Splitting Method[J]. Plasma Science and Technology, 2016, 18(7): 714-719. DOI: 10.1088/1009-0630/18/7/03
Citation: MA Jun (马骏), QIN Hong (秦宏), YU Zhi (于治), LI Dehui (李德徽). Nonlinear Simulations of Coalescence Instability Using a Flux Difference Splitting Method[J]. Plasma Science and Technology, 2016, 18(7): 714-719. DOI: 10.1088/1009-0630/18/7/03

Nonlinear Simulations of Coalescence Instability Using a Flux Difference Splitting Method

Funds: supported by the National Magnetic Connement Fusion Science Program of China (Nos. 2013GB111002, 2013GB105003, 2013GB111000, 2014GB124005, 2015GB111003), National Natural Science Foundation of China (Nos. 11305171, 11405208), JSPS-NRF-NSFC A3 Foresight Program in the field of Plasma Physics (NSFC-11261140328), the Science Foundation of the Institute of Plasma Physics, Chinese Academy of Sciences (DSJJ-15-JC02) and the CAS Program for the Interdisciplinary Collaboration Team
More Information
  • Received Date: August 30, 2015
  • A flux difference splitting numerical scheme based on the finite volume method is applied to study ideal/resistive magnetohydrodynamics. The ideal/resistive MHD equations are cast as a set of hyperbolic conservation laws, and we develop a numerical capability to solve the weak solutions of these hyperbolic conservation laws by combining a multi-state Harten-Lax-Van Leer approximate Riemann solver with the hyperbolic divergence cleaning technique, high order shock-capturing reconstruction schemes, and a third order total variance diminishing Runge-Kutta time evolving scheme. The developed simulation code is applied to study the long time nonlinear evolution of the coalescence instability. It is verified that small structures in the instability oscillate with time and then merge into medium structures in a coherent manner. The medium structures then evolve and merge into large structures, and this trend continues through all scale-lengths. The physics of this interesting nonlinear dynamics is numerically analyzed.
  • 1 Sovinec C R, Glasser A H, Gianakon T A, et al. 2004,J. Comput. Phys., 195: 355 2 Breslau J, Ferraro N, Jardin S. 2009, Phys. Plasmas,16: 092503 3 Godunov S K. 1959, Mat. Sb., 47: 357 4 Miyoshi T, Kusano K. 2005, J. Comput. Phys., 208:315 5 van Leer B. 1979, J. Comput. Phys., 32: 101 6 Harten A, Engquist B, Osher S, et al. 1987, J. Comput.Phys., 71: 231 7 Jiang G S, Shu C W. 1996, J. Comput. Phys., 126:202 8 Todo E F. 2009, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. 3rd ed., Springer-Verlag, Berlin, Heidelberg 9 Roe P L. 1981, J. Comput. Phys., 43: 357 10 Harten A, Lax P D, van Leer B. 1983, SIAM Review,25: 35 11 Toro E F, Spruce M, Speares W. 1994, Shock Waves,4: 25 12 Brio M, Wu C C. 1988, J. Comput. Phys., 75: 400 13 Cargo P, Gallice G. 1997, J. Comput. Phys., 136: 446 14 Balsara D S. 1998, Astrophys. J. Supp., 116: 119 15 Harten A, Hyman J M, Lax P D. 1976, Comm. Pure.Appl. Math., 29: 297 16 Gurski K F. 2004, SIAM J. Sci. Comp., 25: 2165 17 Linde T J. 2002, Int. J. Numer. Methods Fluids, 40:391 18 Li S. 2005, J. Comput. Phys., 203: 344 19 Balsara D S. 2010, J. Comput. Phys., 229: 1970 20 Gombosi T I, Powell K G, and De Zeeuw D L. 1994,J. Geophys. Res. Space Phys., 99: 21525 doi: 10.1029/94JA01540 21 Powell K G. 1994, ICASE Report, 94-24, Langley, VA doi: 10.1007/978-3-642-60543-7 23 22 Dender A, Kemm F, Kr?oner D, et al. 2002, J. Comput.Phys., 175: 645 23 Shu C. 1997, Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws. ICASE Report, No. 97-65, NASA Langley Research Center Hampton, VA 23681-2199 24 Longcope D W, Strauss H R. 1993, Physics of Fluids B, 5: 2858 25 Strauss H R, Longcope D W. 1998, J. Comput. Phys.,147: 318 26 Zhou Yao, Qin Hong, Burby J W, et al. 2014, Phys.Plasmas, 21: 102109 27 Oleinik O A. 1957, Uspekhi Mat. Nauk, 12: 3
  • Related Articles

    [1]Alexander LYSENKO, Iurii VOLK. Influence of two-stream relativistic electron beam parameters on the space-charge wave with broad frequency spectrum formation[J]. Plasma Science and Technology, 2018, 20(3): 35002-035002. DOI: 10.1088/2058-6272/aaa358
    [2]Zhenyu WANG (王振宇), Binhao JIANG (江滨浩), Yuming YAN (严禹明), Hailong ZHAO (赵海龙), N A STROKIN. Spatial charge and compensation method in a whirler[J]. Plasma Science and Technology, 2017, 19(5): 55507-055507. DOI: 10.1088/2058-6272/aa59f4
    [3]YANG Yu (杨愚), S. MARUYAMA, A. FOSSEN, F. VILLERS, G. KISS, ZHANG Bo (张博), LI Bo (李波), JIANG Tao (江涛), HUANG Xiangmei (黄向玫). Nuclear Safety Functions of ITER Gas Injection System Instrumentation and Control and the Concept Design[J]. Plasma Science and Technology, 2016, 18(8): 875-878. DOI: 10.1088/1009-0630/18/8/15
    [4]SANG Ziru(桑子儒), LI Feng(李锋), JIANG Xiao(江晓), JIN Ge(金革). A Reconfigurable Instrument System for Nuclear and Particle Physics Experiments[J]. Plasma Science and Technology, 2014, 16(4): 400-405. DOI: 10.1088/1009-0630/16/4/18
    [5]ZHANG Shanwen(张善文), SONG Yuntao(宋云涛), WANG Zhongwei(王忠伟), JI Xiang(戢翔), E. DALY, M. KALISH, LU Su(卢速), DU Shuangsong(杜双松), LIU Xufeng(刘旭峰), FENG Changle(冯昌乐), YANG Hong(杨洪), WANG Songke(王松可). Design of Tokamak ELM Coil Support in High Nuclear Heat Environment[J]. Plasma Science and Technology, 2014, 16(3): 300-304. DOI: 10.1088/1009-0630/16/3/23
    [6]LIU Hui (刘辉), TANG Ke (唐柯), GAO Ge (高格), FU Peng (傅鹏), et al.. Study of the EAST Fast Control Power Supply Based on Carrier Phase-Shift PWM[J]. Plasma Science and Technology, 2013, 15(9): 950-954. DOI: 10.1088/1009-0630/15/9/22
    [7]SHENG Zongqiang (圣宗强), REN Zhongzhou (任中洲). Investigations on Nuclei near Z = 82 in Relativistic Mean Field Theory with FSUGold[J]. Plasma Science and Technology, 2012, 14(6): 534-538. DOI: 10.1088/1009-0630/14/6/23
    [8]ZENG Sheng(曾晟), F. RAIOLA, T. SPILLANE, LIAN Gang(连刚), ZENG Sheng(曾晟), F. RAIOLA, T. SPILLANE, LIAN Gang(连刚). Nuclear Astrophysics Experiments in Collaboration with Ruhr University[J]. Plasma Science and Technology, 2012, 14(6): 492-495. DOI: 10.1088/1009-0630/14/6/12
    [9]JIANG Songsheng (蒋崧生), HE Ming (何明). Anomalous nuclear reaction in Earth’s interior: a new field in physics science?[J]. Plasma Science and Technology, 2012, 14(5): 438-441. DOI: 10.1088/1009-0630/14/5/25
    [10]SHU Song(舒崧), LI Jiarong (李家荣). A Mean-Field Treatment in Studying Nuclear Matter Through a Thermodynamic Consistent Resummation Scheme[J]. Plasma Science and Technology, 2012, 14(5): 379-382. DOI: 10.1088/1009-0630/14/5/07

Catalog

    Article views (399) PDF downloads (802) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return