Citation: | Tao ZHU (朱涛), Haixing WANG (王海兴), Surong SUN (孙素蓉), Jinyue GENG (耿金越), Yan SHEN (沈岩). Numerical simulation of constricted and diffusive arc–anode attachments in wallstabilized transferred argon arcs[J]. Plasma Science and Technology, 2019, 21(12): 125406. DOI: 10.1088/2058-6272/ab4722 |
[1] |
Mostaghimi J and Boulos M I 2015 Plasma Chem. Plasma Process. 35 421
|
[2] |
Pfender E 1980 Pure Appl. Chem. 52 1773
|
[3] |
Dinulescu H A and Pfender E 1980 J. Appl. Phys. 51 3149
|
[4] |
Chen D M and Pfender E 1980 IEEE Trans. Plasma Sci. 8 252
|
[5] |
Sanders N et al 1982 J. Appl. Phys. 53 4136
|
[6] |
Wilhelmi H, Wimmer W and Pfender E 1985 Numer. Heat Transfer 8 731
|
[7] |
Jenista J, Heberlein V R and Pfender E 1997 IEEE Trans.Plasma Sci. 25 883
|
[8] |
Li L C et al 2008 IEEE Trans. Plasma Sci. 36 1080
|
[9] |
Zhou H L et al 2008 IEEE Trans. Plasma Sci. 36 1084
|
[10] |
Zha J et al 2013 IEEE Trans. Plasma Sci. 41 601
|
[11] |
Wang C et al 2019 Plasma Chem. Plasma Process. 39 407
|
[12] |
Wang C et al 2015 Chin. Phys. B 24 065206
|
[13] |
Liang F et al 2016 J. Phys. D: Appl. Phys. 49 125201
|
[14] |
Liang F et al 2017 Carbon 117 100
|
[15] |
Trelles J P 2018 Plasma Sources Sci. Technol. 27 093001
|
[16] |
Trelles J P 2013 Plasma Sources Sci. Technol. 22 025017
|
[17] |
Li H P, Ostrikov K K and Sun W T 2018 Phys. Rep. 770–772 1
|
[18] |
Guo H et al 2018 Sci. Rep. 8 4783
|
[19] |
Guo H et al 2016 Rev. Sci. Instrum. 87 033502
|
[20] |
Leveroni E and Pfender E 1989 Rev. Sci. Instrum. 60 3744
|
[21] |
Sanders N A and Pfender E 1984 J. Appl. Phys. 55 714
|
[22] |
Amakawa T et al 1998 J. Phys. D: Appl. Phys. 31 2826
|
[23] |
Yang G and Heberlein J 2007 Plasma Sources Sci. Technol.16 529
|
[24] |
Chen D M and Pfender E 1981 IEEE Trans. Plasma Sci. 9 265
|
[25] |
Pfender E and Schafer J 1975 J. Heat Transfer 97 41
|
[26] |
Trelles J P 2016 J. Phys. D: Appl. Phys. 49 393002
|
[27] |
Trelles J P 2014 Plasma Sources Sci. Technol. 23 054002
|
[28] |
Hartmann R M and Heberlein J V 2001 J. Phys. D: Appl. Phys.34 2972
|
[29] |
Wang H X and Chen X 2005 Plasma Sci. Technol. 7 3051
|
[30] |
Park J et al 2008 Plasma Chem. Plasma Process. 28 213
|
[31] |
Guo H et al 2015 Plasma Chem. Plasma Process. 35 75
|
[32] |
Baeva M et al 2012 Plasma Sources Sci. Technol. 21 055027
|
[33] |
Baeva M et al 2012 Phys. Rev. E 85 056404
|
[34] |
Baeva M and Uhrlandt D 2013 J. Phys. D: Appl. Phys. 46 325202
|
[35] |
Baeva M et al 2016 J. Phys. D: Appl. Phys. 49 245205
|
[36] |
Baeva M 2016 Plasma Chem. Plasma Process. 36 151
|
[37] |
Baeva M 2017 Plasma Chem. Plasma Process. 37 513
|
[38] |
Baeva M and Uhrlandt D 2017 Plasma Phys. Technol. 4 203
|
[39] |
Baeva M 2017 Plasma Chem. Plasma Process. 37 341
|
[40] |
Baeva M and Uhrlandt D 2019 Weld. World 63 377
|
[41] |
Baeva M et al 2019 Plasma Chem. Plasma Process. 39 949
|
[42] |
Li H P, Zhang X N and Xia W D 2013 Phys. Plasmas 20 033509
|
[43] |
Zhang X N et al 2013 Phys. Plasmas 20 033508
|
[44] |
Ramshaw J D 1996 J. Non-Equilib. Thermodyn. 21 233
|
[45] |
Ramshaw J D and Chang C H 1992 Plasma Chem. Plasma Process. 12 299
|
[46] |
Ramshaw J D and Chang C H 1993 Plasma Chem. Plasma Process. 13 489
|
[47] |
Ramshaw J D and Chang C H 1996 Phys. Rev. E 53 6382
|
[48] |
Ramshaw J D 1998 J. Non-Equilib. Thermodyn. 23 135
|
[49] |
Wang H X et al 2017 Plasma Chem. Plasma Process. 37 877
|
[50] |
Braun C G and Kunc J A 1987 Phys. Fluids 30 499
|
[51] |
Jonkers J et al 2003 Plasma Sources Sci. Technol. 12 464
|
[52] |
Mitchner M and Kruger C H 1973 Partially Ionized Gases (New York: Wiley)
|
[53] |
Raizer I P 1991 Gas Discharge Physics (Berlin: Springer)
|
[54] |
Cunningham A J, O’Malley T F and Hobson R M 1981 J. Phys. B: At. Mol. Phys. 14 773
|
[55] |
Bultel A et al 2002 Phys. Rev. E 65 046406
|
[56] |
Lymberopoulos D P and Economou D J 1992 J. Appl. Phys.73 3668
|
[57] |
Kabouzi Y et al 2007 Phys. Rev. E 75 016402
|
[58] |
Wei F Z et al 2013 J. Phys. D: Appl. Phys. 46 505205
|
[59] |
Wang H X et al 2014 Plasma Chem. Plasma Process. 34 559
|
[60] |
Zhu X M and Pu Y K 2010 J. Phys. D: Appl. Phys. 43 015204
|
[61] |
He Q S and Wang H X 2017 Plasma Sci. Technol. 19 055502
|
[62] |
Wei Y M, He Q S and Wang H X 2016 J. Propul. Power 32 1472
|
[63] |
Sun S R et al 2016 Plasma Sources Sci. Technol. 26 015003
|
[64] |
Wang H X, Sun S R and Sun W P 2015 Plasma Chem. Plasma Process. 35 543
|
[65] |
Wang H X, Chen S Q and Chen X 2012 J. Phys. D: Appl.Phys. 45 165202
|
[66] |
Wang H X, Sun S R and Chen S Q 2012 Acta Phys. Sin. 61 195203 (in Chinese)
|
[67] |
Chen S Q and Wang H X 2012 Chin. Phys. Lett. 29 025202
|
[68] |
Ridenti M A, Spyrou N and Amorim J 2014 Chem. Phys. Lett.595–596 83
|
[69] |
Lukáč P et al 2011 Plasma Sources Sci. Technol. 20 055012
|
[70] |
Wang L J et al 2017 J. Phys. D: Appl. Phys. 50 095203
|
[71] |
Wang L J et al 2019 Appl. Phys. Lett. 115 014101
|
[1] | Jiahui ZHANG (张珈珲), Xin JI (吉欣), Keyuan YANG (杨克元), Lei SHI (石磊), Qingxia WANG (王青霞). Energy dissipation and power deposition of electromagnetic waves in the plasma sheath[J]. Plasma Science and Technology, 2021, 23(1): 15404-015404. DOI: 10.1088/2058-6272/abc946 |
[2] | Xuyang CHEN (陈旭阳), Fangfang SHEN (沈方芳), Yanming LIU (刘彦明), Wei AI (艾炜), Xiaoping LI (李小平). Study of plasma-based stable and ultra-wideband electromagnetic wave absorption for stealth application[J]. Plasma Science and Technology, 2018, 20(6): 65503-065503. DOI: 10.1088/2058-6272/aaaa18 |
[3] | Zhenyu WANG (王振宇), Binhao JIANG (江滨浩), N A STROKIN, A N STUPIN. Study on plasma sheath and plasma transport properties in the azimuthator[J]. Plasma Science and Technology, 2018, 20(4): 45501-045501. DOI: 10.1088/2058-6272/aaa754 |
[4] | Bowen LI (李博文), Zhibin WANG (王志斌), Qiuyue NIE (聂秋月), Xiaogang WANG (王晓钢), Fanrong KONG (孔繁荣), Zhenyu WANG (王振宇). Collision effects on propagation characteristics of electromagnetic waves in a sub-wavelength plasma slab of partially ionized dense plasmas[J]. Plasma Science and Technology, 2018, 20(1): 14015-014015. DOI: 10.1088/2058-6272/aa84ab |
[5] | LIU Zhiwei (刘智惟), BAO Weimin (包为民), LI Xiaoping (李小平), SHI Lei (石磊), LIU Donglin (刘东林). Influences of Turbulent Reentry Plasma Sheath on Wave Scattering and Propagation[J]. Plasma Science and Technology, 2016, 18(6): 617-626. DOI: 10.1088/1009-0630/18/6/07 |
[6] | LIU Zhiwei (刘智惟), BAO Weimin (包为民), LI Xiaoping (李小平), LIU Donglin (刘东林), ZHOU Hui (周辉). Influence of Plasma Pressure Fluctuation on RF Wave Propagation[J]. Plasma Science and Technology, 2016, 18(2): 131-137. DOI: 10.1088/1009-0630/18/2/06 |
[7] | REN Yanqiu (仁艳秋), LI Gun (李滚), DUAN Wenshan (段文山). Damping Solitary Wave in a Three-Dimensional Rectangular Geometry Plasma[J]. Plasma Science and Technology, 2016, 18(2): 108-113. DOI: 10.1088/1009-0630/18/2/02 |
[8] | LIU Huiping(刘惠平), ZOU Xiu(邹秀), QIU Minghui(邱明辉). Sheath Criterion for an Electronegative Plasma Sheath in an Oblique Magnetic Field[J]. Plasma Science and Technology, 2014, 16(7): 633-636. DOI: 10.1088/1009-0630/16/7/01 |
[9] | ZHANG Liping(张丽萍), SU Junyan(苏俊燕), LI Yanlong(李延龙). Propagation of Nonlinear Solitary Waves in Nonuniform Dusty Plasmas with Two-Ion Temperature[J]. Plasma Science and Technology, 2014, 16(3): 177-181. DOI: 10.1088/1009-0630/16/3/01 |
[10] | LI Chunzao(李春早), LIU Shaobin(刘少斌), BIAN Borui(卞博锐), DAI Zhaoyang(戴钊阳), ZHANG Xueyong(张学勇). Theoretical Analysis on Propagation of Electromagnetic Wave in Preformed Narrow Plasma Channel[J]. Plasma Science and Technology, 2012, 14(8): 702-707. DOI: 10.1088/1009-0630/14/8/04 |
1. | Engelbrecht, J.T., Kumari, D., Franck, C.M. Optical characterization of actively cooled switching arcs in SF6 alternatives. Journal of Physics D: Applied Physics, 2025, 58(10): 105210. DOI:10.1088/1361-6463/ada450 |
2. | Becerra, M., Nilsson, J., Franke, S. et al. Spectral and electric diagnostics of low-current arc plasmas in CO2 with N2 and H2O admixtures. Journal of Physics D: Applied Physics, 2024, 57(1): 015202. DOI:10.1088/1361-6463/acfcc6 |
3. | Wang, K., Zhao, D., Deng, J. et al. Diagnostics of Post-Arc Electron Number Density in a Model Circuit Breaker. 2024. DOI:10.1109/ICEPE-ST61894.2024.10792550 |
4. | Yan, J.D., Zhang, K., Cao, R. et al. A Ranking Algorithm for the Thermal Interruption Ability of Potential SF6 Alternative Gases. IEEE Transactions on Power Delivery, 2024. DOI:10.1109/TPWRD.2024.3518603 |
5. | Cui, Y., Wu, Y., Niu, C. et al. Evolution of anodic erosion components and heat transfer efficiency for W and W80Ag20in atmospheric-pressure arcs. Journal of Physics D: Applied Physics, 2020, 53(47): 475203. DOI:10.1088/1361-6463/ababcf |