Advanced Search+
Tao ZHU (朱涛), Haixing WANG (王海兴), Surong SUN (孙素蓉), Jinyue GENG (耿金越), Yan SHEN (沈岩). Numerical simulation of constricted and diffusive arc–anode attachments in wallstabilized transferred argon arcs[J]. Plasma Science and Technology, 2019, 21(12): 125406. DOI: 10.1088/2058-6272/ab4722
Citation: Tao ZHU (朱涛), Haixing WANG (王海兴), Surong SUN (孙素蓉), Jinyue GENG (耿金越), Yan SHEN (沈岩). Numerical simulation of constricted and diffusive arc–anode attachments in wallstabilized transferred argon arcs[J]. Plasma Science and Technology, 2019, 21(12): 125406. DOI: 10.1088/2058-6272/ab4722

Numerical simulation of constricted and diffusive arc–anode attachments in wallstabilized transferred argon arcs

Funds: This work was supported by National Natural Science Foundation of China (Nos. 11735004, 11575019, 11702021) and the National Postdoctoral Program for Innovative Talents (BX20180029).
More Information
  • Received Date: July 31, 2019
  • Revised Date: September 22, 2019
  • Accepted Date: September 23, 2019
  • A numerical simulation is conducted to investigate arc–anode attachment behavior, especially the formation mechanism of the constricted arc attachment mode for the water-cooled anode of wall-stabilized transferred argon arcs. Argon molecular ions and the corresponding kinetic processes are included to the finite-rate chemistry model in order to capture the chemical nonequilibrium characteristics of the arc near the anode region. Modeling results show that constricted and diffusive arc–anode attachments can be self-consistently obtained at different arc currents while keeping other parameters unchanged. The dominant kinetic processes contributing to ionization and recombination in the arc center and fringes are presented. The results show that in arc fringes and the arc attachment region, molecular ion recombination plays an important role which leads to the rapid loss of electrons. The radial evolution of the production, loss and transport processes of electrons is further analyzed. It is found that for the constricted arc attachment mode, both the recombination and convection transport caused by the anode jet result in the loss of electrons at the arc fringes, which leads to the shrinkage of the arc column at the anode. The formation of the anode jet is due to the combined action of radial and axial Lorentz forces in the anode region.
  • [1]
    Mostaghimi J and Boulos M I 2015 Plasma Chem. Plasma Process. 35 421
    [2]
    Pfender E 1980 Pure Appl. Chem. 52 1773
    [3]
    Dinulescu H A and Pfender E 1980 J. Appl. Phys. 51 3149
    [4]
    Chen D M and Pfender E 1980 IEEE Trans. Plasma Sci. 8 252
    [5]
    Sanders N et al 1982 J. Appl. Phys. 53 4136
    [6]
    Wilhelmi H, Wimmer W and Pfender E 1985 Numer. Heat Transfer 8 731
    [7]
    Jenista J, Heberlein V R and Pfender E 1997 IEEE Trans.Plasma Sci. 25 883
    [8]
    Li L C et al 2008 IEEE Trans. Plasma Sci. 36 1080
    [9]
    Zhou H L et al 2008 IEEE Trans. Plasma Sci. 36 1084
    [10]
    Zha J et al 2013 IEEE Trans. Plasma Sci. 41 601
    [11]
    Wang C et al 2019 Plasma Chem. Plasma Process. 39 407
    [12]
    Wang C et al 2015 Chin. Phys. B 24 065206
    [13]
    Liang F et al 2016 J. Phys. D: Appl. Phys. 49 125201
    [14]
    Liang F et al 2017 Carbon 117 100
    [15]
    Trelles J P 2018 Plasma Sources Sci. Technol. 27 093001
    [16]
    Trelles J P 2013 Plasma Sources Sci. Technol. 22 025017
    [17]
    Li H P, Ostrikov K K and Sun W T 2018 Phys. Rep. 770–772 1
    [18]
    Guo H et al 2018 Sci. Rep. 8 4783
    [19]
    Guo H et al 2016 Rev. Sci. Instrum. 87 033502
    [20]
    Leveroni E and Pfender E 1989 Rev. Sci. Instrum. 60 3744
    [21]
    Sanders N A and Pfender E 1984 J. Appl. Phys. 55 714
    [22]
    Amakawa T et al 1998 J. Phys. D: Appl. Phys. 31 2826
    [23]
    Yang G and Heberlein J 2007 Plasma Sources Sci. Technol.16 529
    [24]
    Chen D M and Pfender E 1981 IEEE Trans. Plasma Sci. 9 265
    [25]
    Pfender E and Schafer J 1975 J. Heat Transfer 97 41
    [26]
    Trelles J P 2016 J. Phys. D: Appl. Phys. 49 393002
    [27]
    Trelles J P 2014 Plasma Sources Sci. Technol. 23 054002
    [28]
    Hartmann R M and Heberlein J V 2001 J. Phys. D: Appl. Phys.34 2972
    [29]
    Wang H X and Chen X 2005 Plasma Sci. Technol. 7 3051
    [30]
    Park J et al 2008 Plasma Chem. Plasma Process. 28 213
    [31]
    Guo H et al 2015 Plasma Chem. Plasma Process. 35 75
    [32]
    Baeva M et al 2012 Plasma Sources Sci. Technol. 21 055027
    [33]
    Baeva M et al 2012 Phys. Rev. E 85 056404
    [34]
    Baeva M and Uhrlandt D 2013 J. Phys. D: Appl. Phys. 46 325202
    [35]
    Baeva M et al 2016 J. Phys. D: Appl. Phys. 49 245205
    [36]
    Baeva M 2016 Plasma Chem. Plasma Process. 36 151
    [37]
    Baeva M 2017 Plasma Chem. Plasma Process. 37 513
    [38]
    Baeva M and Uhrlandt D 2017 Plasma Phys. Technol. 4 203
    [39]
    Baeva M 2017 Plasma Chem. Plasma Process. 37 341
    [40]
    Baeva M and Uhrlandt D 2019 Weld. World 63 377
    [41]
    Baeva M et al 2019 Plasma Chem. Plasma Process. 39 949
    [42]
    Li H P, Zhang X N and Xia W D 2013 Phys. Plasmas 20 033509
    [43]
    Zhang X N et al 2013 Phys. Plasmas 20 033508
    [44]
    Ramshaw J D 1996 J. Non-Equilib. Thermodyn. 21 233
    [45]
    Ramshaw J D and Chang C H 1992 Plasma Chem. Plasma Process. 12 299
    [46]
    Ramshaw J D and Chang C H 1993 Plasma Chem. Plasma Process. 13 489
    [47]
    Ramshaw J D and Chang C H 1996 Phys. Rev. E 53 6382
    [48]
    Ramshaw J D 1998 J. Non-Equilib. Thermodyn. 23 135
    [49]
    Wang H X et al 2017 Plasma Chem. Plasma Process. 37 877
    [50]
    Braun C G and Kunc J A 1987 Phys. Fluids 30 499
    [51]
    Jonkers J et al 2003 Plasma Sources Sci. Technol. 12 464
    [52]
    Mitchner M and Kruger C H 1973 Partially Ionized Gases (New York: Wiley)
    [53]
    Raizer I P 1991 Gas Discharge Physics (Berlin: Springer)
    [54]
    Cunningham A J, O’Malley T F and Hobson R M 1981 J. Phys. B: At. Mol. Phys. 14 773
    [55]
    Bultel A et al 2002 Phys. Rev. E 65 046406
    [56]
    Lymberopoulos D P and Economou D J 1992 J. Appl. Phys.73 3668
    [57]
    Kabouzi Y et al 2007 Phys. Rev. E 75 016402
    [58]
    Wei F Z et al 2013 J. Phys. D: Appl. Phys. 46 505205
    [59]
    Wang H X et al 2014 Plasma Chem. Plasma Process. 34 559
    [60]
    Zhu X M and Pu Y K 2010 J. Phys. D: Appl. Phys. 43 015204
    [61]
    He Q S and Wang H X 2017 Plasma Sci. Technol. 19 055502
    [62]
    Wei Y M, He Q S and Wang H X 2016 J. Propul. Power 32 1472
    [63]
    Sun S R et al 2016 Plasma Sources Sci. Technol. 26 015003
    [64]
    Wang H X, Sun S R and Sun W P 2015 Plasma Chem. Plasma Process. 35 543
    [65]
    Wang H X, Chen S Q and Chen X 2012 J. Phys. D: Appl.Phys. 45 165202
    [66]
    Wang H X, Sun S R and Chen S Q 2012 Acta Phys. Sin. 61 195203 (in Chinese)
    [67]
    Chen S Q and Wang H X 2012 Chin. Phys. Lett. 29 025202
    [68]
    Ridenti M A, Spyrou N and Amorim J 2014 Chem. Phys. Lett.595–596 83
    [69]
    Lukáč P et al 2011 Plasma Sources Sci. Technol. 20 055012
    [70]
    Wang L J et al 2017 J. Phys. D: Appl. Phys. 50 095203
    [71]
    Wang L J et al 2019 Appl. Phys. Lett. 115 014101
  • Related Articles

    [1]Jiahui ZHANG (张珈珲), Xin JI (吉欣), Keyuan YANG (杨克元), Lei SHI (石磊), Qingxia WANG (王青霞). Energy dissipation and power deposition of electromagnetic waves in the plasma sheath[J]. Plasma Science and Technology, 2021, 23(1): 15404-015404. DOI: 10.1088/2058-6272/abc946
    [2]Xuyang CHEN (陈旭阳), Fangfang SHEN (沈方芳), Yanming LIU (刘彦明), Wei AI (艾炜), Xiaoping LI (李小平). Study of plasma-based stable and ultra-wideband electromagnetic wave absorption for stealth application[J]. Plasma Science and Technology, 2018, 20(6): 65503-065503. DOI: 10.1088/2058-6272/aaaa18
    [3]Zhenyu WANG (王振宇), Binhao JIANG (江滨浩), N A STROKIN, A N STUPIN. Study on plasma sheath and plasma transport properties in the azimuthator[J]. Plasma Science and Technology, 2018, 20(4): 45501-045501. DOI: 10.1088/2058-6272/aaa754
    [4]Bowen LI (李博文), Zhibin WANG (王志斌), Qiuyue NIE (聂秋月), Xiaogang WANG (王晓钢), Fanrong KONG (孔繁荣), Zhenyu WANG (王振宇). Collision effects on propagation characteristics of electromagnetic waves in a sub-wavelength plasma slab of partially ionized dense plasmas[J]. Plasma Science and Technology, 2018, 20(1): 14015-014015. DOI: 10.1088/2058-6272/aa84ab
    [5]LIU Zhiwei (刘智惟), BAO Weimin (包为民), LI Xiaoping (李小平), SHI Lei (石磊), LIU Donglin (刘东林). Influences of Turbulent Reentry Plasma Sheath on Wave Scattering and Propagation[J]. Plasma Science and Technology, 2016, 18(6): 617-626. DOI: 10.1088/1009-0630/18/6/07
    [6]LIU Zhiwei (刘智惟), BAO Weimin (包为民), LI Xiaoping (李小平), LIU Donglin (刘东林), ZHOU Hui (周辉). Influence of Plasma Pressure Fluctuation on RF Wave Propagation[J]. Plasma Science and Technology, 2016, 18(2): 131-137. DOI: 10.1088/1009-0630/18/2/06
    [7]REN Yanqiu (仁艳秋), LI Gun (李滚), DUAN Wenshan (段文山). Damping Solitary Wave in a Three-Dimensional Rectangular Geometry Plasma[J]. Plasma Science and Technology, 2016, 18(2): 108-113. DOI: 10.1088/1009-0630/18/2/02
    [8]LIU Huiping(刘惠平), ZOU Xiu(邹秀), QIU Minghui(邱明辉). Sheath Criterion for an Electronegative Plasma Sheath in an Oblique Magnetic Field[J]. Plasma Science and Technology, 2014, 16(7): 633-636. DOI: 10.1088/1009-0630/16/7/01
    [9]ZHANG Liping(张丽萍), SU Junyan(苏俊燕), LI Yanlong(李延龙). Propagation of Nonlinear Solitary Waves in Nonuniform Dusty Plasmas with Two-Ion Temperature[J]. Plasma Science and Technology, 2014, 16(3): 177-181. DOI: 10.1088/1009-0630/16/3/01
    [10]LI Chunzao(李春早), LIU Shaobin(刘少斌), BIAN Borui(卞博锐), DAI Zhaoyang(戴钊阳), ZHANG Xueyong(张学勇). Theoretical Analysis on Propagation of Electromagnetic Wave in Preformed Narrow Plasma Channel[J]. Plasma Science and Technology, 2012, 14(8): 702-707. DOI: 10.1088/1009-0630/14/8/04
  • Cited by

    Periodical cited type(5)

    1. Engelbrecht, J.T., Kumari, D., Franck, C.M. Optical characterization of actively cooled switching arcs in SF6 alternatives. Journal of Physics D: Applied Physics, 2025, 58(10): 105210. DOI:10.1088/1361-6463/ada450
    2. Becerra, M., Nilsson, J., Franke, S. et al. Spectral and electric diagnostics of low-current arc plasmas in CO2 with N2 and H2O admixtures. Journal of Physics D: Applied Physics, 2024, 57(1): 015202. DOI:10.1088/1361-6463/acfcc6
    3. Wang, K., Zhao, D., Deng, J. et al. Diagnostics of Post-Arc Electron Number Density in a Model Circuit Breaker. 2024. DOI:10.1109/ICEPE-ST61894.2024.10792550
    4. Yan, J.D., Zhang, K., Cao, R. et al. A Ranking Algorithm for the Thermal Interruption Ability of Potential SF6 Alternative Gases. IEEE Transactions on Power Delivery, 2024. DOI:10.1109/TPWRD.2024.3518603
    5. Cui, Y., Wu, Y., Niu, C. et al. Evolution of anodic erosion components and heat transfer efficiency for W and W80Ag20in atmospheric-pressure arcs. Journal of Physics D: Applied Physics, 2020, 53(47): 475203. DOI:10.1088/1361-6463/ababcf

    Other cited types(0)

Catalog

    Article views (145) PDF downloads (89) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return