Advanced Search+
Yunxi SHI (施蕴曦), Yixi CAI (蔡忆昔), Xiaohua LI (李小华), Xiaoyu PU (濮晓宇), Nan ZHAO (赵楠), Weikai WANG (王为凯). Effect of the amount of trapped particulate matter on diesel particulate filter regeneration performance using nonthermal plasma assisted by exhaust waste heat[J]. Plasma Science and Technology, 2020, 22(1): 15504-015504. DOI: 10.1088/2058-6272/ab4d3c
Citation: Yunxi SHI (施蕴曦), Yixi CAI (蔡忆昔), Xiaohua LI (李小华), Xiaoyu PU (濮晓宇), Nan ZHAO (赵楠), Weikai WANG (王为凯). Effect of the amount of trapped particulate matter on diesel particulate filter regeneration performance using nonthermal plasma assisted by exhaust waste heat[J]. Plasma Science and Technology, 2020, 22(1): 15504-015504. DOI: 10.1088/2058-6272/ab4d3c

Effect of the amount of trapped particulate matter on diesel particulate filter regeneration performance using nonthermal plasma assisted by exhaust waste heat

Funds: This work is currently supported by National Natural Science Foundation of China (Nos. 51806085, 51676089), China Postdoctoral Science Foundation (No. 2018M642175), Jiangsu Planned Projects for Postdoctoral Research Fund (No. 2018K101C) and Jiangsu University Youth Talent Cultivation Program Funded Project.
More Information
  • Received Date: July 30, 2019
  • Revised Date: October 10, 2019
  • Accepted Date: October 11, 2019
  • An experimental system of diesel particulate filter (DPF) regeneration using non-thermal plasma (NTP) technology assisted by exhaust waste heat was conducted and regeneration experiments of DPFs with different amounts of trapped particulate matter (PM) were conducted. The concentrations of the PM decomposition products (COx) and the internal temperature of the DPF were monitored to determine the performance of DPF regeneration and thermal safety of the NTP technology. The results showed that the concentrations of CO and CO2 and the mass of PM decomposition increased with the increase in the amount of captured PM, whereas the concentration of the NTP active substance (O3) escaping from the DPF decreased under the same working conditions of the NTP injection system. A higher amount of captured PM promoted the oxidative decomposition reaction between NTP and PM and improved the utilization rate of the NTP active substances. The peak temperature at the same measuring point inside the DPF generally increased and the phases of the peak temperature were delayed as the amount of captured PM increased. The temperature peaks and temperature gradients during the DPF regeneration process were far lower than the failure limit value, which indicates that NTP regeneration technology has good thermal durability and increases the service life of the DPF.
  • [1]
    Zhang B et al 2017 Appl. Therm. Eng. 121 838
    [2]
    Fang J et al 2017 Appl. Therm. Eng. 124 633
    [3]
    Feng X Y et al 2014 Res. Environ. Sci. 27 36 (in Chinese)
    [4]
    Gu L B et al 2017 Plasma Sci. Technol. 19 115503
    [5]
    E J Q et al 2016 Appl. Therm. Eng. 100 356
    [6]
    Chen K, Martirosyan K and Luss D 2010 Ind. Eng. Chem. Res.49 10358
    [7]
    Bai S Z et al 2017 Appl. Therm. Eng. 119 297
    [8]
    Palma V et al 2015 Fuel 140 50
    [9]
    Lou D M et al 2013 Adv. Mater. Res. 726–731 2234
    [10]
    Mohapatro S and Rajanikanth B S 2011 Plasma Sci. Technol.13 82
    [11]
    Ma C C et al 2016 Appl. Therm. Eng. 99 1110
    [12]
    Fushimi C et al 2008 Plasma Chem. Plasma Process. 28 511
    [13]
    Wang P et al 2015 Appl. Therm. Eng. 91 1
    [14]
    Lin H et al 2007 Proc. Combust. Inst. 31 3335
    [15]
    Yao S et al 2006 Plasma Chem. Plasma Process. 26 481
    [16]
    Yao S L et al 2007 AIChE J. 53 1891
    [17]
    Yao S L et al 2010 Asia-Pac. J. Chem. Eng. 5 701
    [18]
    Okubo M et al 2007 Thin Solid Films 515 4289
    [19]
    Okubo M et al 2009 IEEE Trans. Ind. Appl. 45 1568
    [20]
    Okubo M et al 2010 Improvement of NOx reduction efficiency in diesel emission using nonthermal plasma—exhaust gas recirculation combined aftertreatment 2010 IEEE Industry Applications Society Annual Meeting Houston (Piscataway,NJ: IEEE)
    [21]
    Kuwahara T et al 2015 Ozone: Sci. Eng. 37 518
    [22]
    Kuwahara T et al 2013 Appl. Energy 111 652
    [23]
    Shi Y X et al 2014 Int. J. Autom. Technol. 15 871
    [24]
    Shi Y X et al 2017 Plasma Chem. Plasma Process. 37 451
    [25]
    Shi Y X et al 2016 Plasma Chem. Plasma Process. 36 783
    [26]
    Pu X Y et al 2018 Int. J. Autom. Technol. 19 421
    [27]
    Koudriavtsev O et al 2002 IEEE Trans. Ind. Appl. 38 369
    [28]
    Takaki K, Chang J S and Kostov K G 2004 IEEE Trans.Dielectr. Electr. Insul. 11 481
    [29]
    Yagi S and Tanaka M 1979 J. Phys. D: Appl. Phys. 12 1509
    [30]
    Kogelschatz U, Eliasson B and Hirth M 1988 Ozone: Sci. Eng.10 367
    [31]
    Yusop A F et al 2013 Procedia Eng. 53 530
    [32]
    Tan P Q et al 2007 Energy Convers. Manage. 48 510
    [33]
    Okubo M et al 2008 Plasma Chem. Plasma Process. 28 173
    [34]
    Grundmann J, Mülle S and Zahn R J 2005 Plasma Chem.Plasma Process. 25 455
    [35]
    Shi Y X 2017 Study on mechanism and influence factors ofDPF low temperature regeneration based on non-thermalplasma technology PhD Thesis Jiangsu University, Zhenjiang, China (in Chinese)
    [36]
    Shi Y X et al 2015 J. Eng. Thermophys. 36 2754 (in Chinese)
    [37]
    Chen K, Martirosyan K S and Luss D 2011 Chem. Eng. J.176–177 144
    [38]
    Papitha R et al 2014 Int. J. Appl. Ceram. Technol. 11 773
  • Related Articles

    [1]Yunxi SHI (施蕴曦), Yirui LU (卢奕睿), Yixi CAI (蔡忆昔), Yong HE (何勇), Yin ZHOU (周银), Yi CHEN (陈祎), Huarong QIU (邱华荣). Experimental study on the parameter optimization and application of a packed-bed dielectric barrier discharge reactor in diesel particulate filter regeneration[J]. Plasma Science and Technology, 2021, 23(11): 115505. DOI: 10.1088/2058-6272/ac1dfd
    [2]Yunxi SHI (施蕴曦), Yirui LU (卢奕睿), Yixi CAI (蔡忆昔), Yong HE (何勇), Yin ZHOU (周银), Yingxin CUI (崔应欣), Haoming SUN (孙浩铭). Analysis of the microstructure and elemental occurrence state of residual ash-PM following DPF regeneration by injecting oxygen into non-thermal plasma[J]. Plasma Science and Technology, 2021, 23(9): 95504-095504. DOI: 10.1088/2058-6272/ac1058
    [3]Junfeng RONG (荣俊锋), Kaixun ZHU (朱凯勋), Minggong CHEN (陈明功). Study on purification technology of polyacrylamide wastewater by non-thermal plasma[J]. Plasma Science and Technology, 2019, 21(5): 54008-054008. DOI: 10.1088/2058-6272/aafceb
    [4]Mooktzeng LIM (林木森), Ahmad Zulazlan Shah ZULKIFLI. Investigation of biomass surface modification using non-thermal plasma treatment[J]. Plasma Science and Technology, 2018, 20(11): 115502. DOI: 10.1088/2058-6272/aac819
    [5]Pedro AFFONSO NOBREGA, Alain GAUNAND, Vandad ROHANI, François CAUNEAU, Laurent FULCHERI. Applying chemical engineering concepts to non-thermal plasma reactors[J]. Plasma Science and Technology, 2018, 20(6): 65512-065512. DOI: 10.1088/2058-6272/aab301
    [6]Linbo GU (顾林波), Yixi CAI (蔡忆昔), Yunxi SHI (施蕴曦), Jing WANG (王静), Xiaoyu PU (濮晓宇), Jing TIAN (田晶), Runlin FAN (樊润林). Effect of indirect non-thermal plasma on particle size distribution and composition of diesel engine particles[J]. Plasma Science and Technology, 2017, 19(11): 115503. DOI: 10.1088/2058-6272/aa7f6e
    [7]Ying ZHAO (赵颖), Risheng YAO (姚日升), Yuedong MENG (孟月东), Jiaxing LI (李家星), Yiman JIANG (江贻满), Longwei CHEN (陈龙威). The degradation of oxadiazon by non-thermal plasma with a dielectric barrier configuration[J]. Plasma Science and Technology, 2017, 19(3): 34001-034001. DOI: 10.1088/2058-6272/19/3/034001
    [8]ZHENG Dianfeng (郑殿峰). The Advantages of Non-Thermal Plasma for Detonation Initiation Compared with Spark Plug[J]. Plasma Science and Technology, 2016, 18(2): 162-167. DOI: 10.1088/1009-0630/18/2/11
    [9]LIU Xiaohu (刘小虎), HONG Feng (洪枫), GUO Ying (郭颖), ZHANG Jing (张菁), SHI Jianjun (石建军). Sterilization of Staphylococcus Aureus by an Atmospheric Non-Thermal Plasma Jet[J]. Plasma Science and Technology, 2013, 15(5): 439-442. DOI: 10.1088/1009-0630/15/5/09
    [10]Sankarsan Mohapatro, B S Rajanikanth. Study of Pulsed Plasma in a Crossed Flow Dielectric Barrier Discharge Reactor for Improvement of NOx Removal in Raw Diesel Engine Exhaust[J]. Plasma Science and Technology, 2011, 13(1): 82-87.
  • Cited by

    Periodical cited type(14)

    1. Luo, Y., Shi, Y., Zhuang, K. et al. Study on the Evolution of Physicochemical Properties of Carbon Black at Different Regeneration Stages of Diesel Particulate Filters Regenerated by Non-Thermal Plasma. Processes, 2024, 12(6): 1113. DOI:10.3390/pr12061113
    2. Shi, Y., Zhou, Y., Li, Z. et al. Effect of Temperature-controlled conditions on the decomposition of particulate matter deposited in the diesel particulate filter channel by treatment with Non-thermal plasma. Fuel, 2023. DOI:10.1016/j.fuel.2023.128547
    3. Cai, Z., Yan, F., Hu, J. et al. Temperature characteristics of silicon carbide particulate filter during drop-to-idle regeneration applied to a diesel vehicle. Fuel, 2023. DOI:10.1016/j.fuel.2022.126921
    4. Ye, J., E, J., Peng, Q. Effects of porosity setting and multilayers of diesel particulate filter on the improvement of regeneration performance. Energy, 2023. DOI:10.1016/j.energy.2022.126063
    5. Yao, D., Hu, J., Zhang, B. et al. Research on dynamic modeling and carbon load estimation of diesel particulate filter. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2023, 45(4): 12165-12180. DOI:10.1080/15567036.2023.2269126
    6. Lu, Y., Shi, Y., Cai, Y. et al. Physicochemical Properties of Particulate Matter Deposited in DPF Channels During Regeneration by Non-Thermal Plasma | [NTP 再生 DPF 孔道内沉积颗粒物的理化特性]. Neiranji Xuebao/Transactions of CSICE (Chinese Society for Internal Combustion Engines), 2023, 41(4): 307-314. DOI:10.16236/j.cnki.nrjxb.202304036
    7. Shi, Y., Zhou, Y., Li, Z. et al. Effect of temperature control conditions on DPF regeneration by nonthermal plasma. Chemosphere, 2022. DOI:10.1016/j.chemosphere.2022.134787
    8. Qiang, T.P., Peng, L.Y., De Yuan, W. et al. Effects of Catalyst Structural Parameters on the Performance of Exhaust Gas Aftertreatment System of Diesel Engines. International Journal of Automotive Technology, 2022, 23(4): 1085-1097. DOI:10.1007/s12239-022-0095-x
    9. Shi, Y., Lu, Y., Cai, Y. et al. Evolution of particulate matter deposited in the DPF channel during low-temperature regeneration by non-thermal plasma. Fuel, 2022. DOI:10.1016/j.fuel.2022.123552
    10. Dong, R., Zhang, Z., Ye, Y. et al. Review of Particle Filters for Internal Combustion Engines. Processes, 2022, 10(5): 993. DOI:10.3390/pr10050993
    11. Lu, Y., Shi, Y., Cai, Y. et al. Microcrystal Structure and C/O Element Occurrence State of Diesel PM by Non-Thermal Plasma Oxidation at Different Reaction Temperatures. International Journal of Automotive Technology, 2021, 22(6): 1711-1721. DOI:10.1007/s12239-021-0147-7
    12. Shi, Y., Lu, Y., Cai, Y. et al. Experimental study on the parameter optimization and application of a packed-bed dielectric barrier discharge reactor in diesel particulate filter regeneration. Plasma Science and Technology, 2021, 23(11): 115505. DOI:10.1088/2058-6272/ac1dfd
    13. Shi, Y., Lu, Y., Cai, Y. et al. Analysis of the microstructure and elemental occurrence state of residual ash-PM following DPF regeneration by injecting oxygen into non-thermal plasma. Plasma Science and Technology, 2021, 23(9): 095504. DOI:10.1088/2058-6272/ac1058
    14. Li, J., Lu, H., Wang, Q. et al. Enhanced removal of ultrafine particles from kerosene combustion using a dielectric barrier discharge reactor packed with porous alumina balls. Plasma Science and Technology, 2021, 23(7): 075505. DOI:10.1088/2058-6272/abffaa

    Other cited types(0)

Catalog

    Article views (124) PDF downloads (111) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return