Advanced Search+
In Je KANG, Min-Keun BAE, In Sun PARK, Min Ji LEE, Kyu-Sun CHUNG. Estimation of plasma density perturbation from dusty plasma injection by laser irradiation on tungsten target in DiPS[J]. Plasma Science and Technology, 2020, 22(4): 45601-045601. DOI: 10.1088/2058-6272/ab568c
Citation: In Je KANG, Min-Keun BAE, In Sun PARK, Min Ji LEE, Kyu-Sun CHUNG. Estimation of plasma density perturbation from dusty plasma injection by laser irradiation on tungsten target in DiPS[J]. Plasma Science and Technology, 2020, 22(4): 45601-045601. DOI: 10.1088/2058-6272/ab568c

Estimation of plasma density perturbation from dusty plasma injection by laser irradiation on tungsten target in DiPS

Funds: This research was supported by National R&D Program through the Nation Research Foundation of Korea (NRF) funded by the Ministry of Education (2017R1D1A1B03033076). Additionally, this research was supported by National R&D Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2019M1A7A1A03088471).
More Information
  • Received Date: June 24, 2019
  • Revised Date: November 10, 2019
  • Accepted Date: November 11, 2019
  • To investigate the interaction of dusty plasma with magnetized plasmas at divertor plasma simulator, radial profiles of plasma density (ne) and electron temperature were measured in terms of plasma discharge currents and magnetic flux intensity by using a fast scanning probes system with triple tips. Dusty plasma with dusts (a generation rate of 3 μg s−1 and a size of 1–10 μm) was produced via interactions between a high-power laser beam and a full tungsten target. As ne increases, the scale of the effects of dusty plasma injection on magnetized plasmas was decreased. Also, the duration of transient fluctuation was reduced. For numerical estimation of plasma density perturbation due to dusty plasma injection, the result was ∼10% at a core region of the magnetized plasma with ne of (2–5)×1011 cm−3 at steady state condition.
  • [1]
    El-Labany S K et al 2015 Phys. Plasmas 22 023711
    [2]
    Lazzaro E et al 2012 Plasma Phys. Control. Fusion 54124043
    [3]
    Thomas E et al 2015 J. Plasma Phys. 81 345810206
    [4]
    Pigarov A Y et al 2005 Phys. Plasmas 12 122508
    [5]
    Sharpe J P et al 2005 J. Nucl. Mater. 337 1000
    [6]
    Hong S H, Grisolia C and Monier-Garbet P 2009 Plasma Phys.Control. Fusion 51 075013
    [7]
    Winter J 2004 Plasma Phys. Control. Fusion 46 B583
    [8]
    Flanagan J C et al 2015 Plasma Phys. Control. Fusion 57 014037
    [9]
    Balden M et al 2014 Nucl. Fusion 54 073010
    [10]
    Rudakov D L et al 2009 Nucl. Fusion 49 085022
    [11]
    Kwon M et al 2011 Nucl. Fusion 51 094006
    [12]
    Kim K R et al 2013 J. Nucl. Mater. 438 S719
    [13]
    Federici G, Loarte A and Strohmayer G 2003 Plasma Phys.Control. Fusion 45 1523
    [14]
    Carpentier-Chouchana S et al 2014 Phys. Scr. 2014 014002
    [15]
    Pitts R A et al 2011 J. Nucl. Mater. 415 S957
    [16]
    Jia Y Z et al 2017 J. Nucl. Mater. 487 68
    [17]
    Farid N et al 2015 J. Nucl. Mater. 463 241
    [18]
    Yu J H et al 2014 Phys. Scr. 2014 014036
    [19]
    Xiao Q M et al 2014 J. Nucl. Mater. 455 180
    [20]
    Ohno N et al 2007 J. Nucl. Mater. 363–365 1153
    [21]
    Kajita S et al 2007 Appl. Phys. Lett. 91 261501
    [22]
    Chung K S 2012 Plasma Sources Sci. Technol. 21 063001
    [23]
    Chung K S et al 2006 Contrib. Plasma Phys. 46 354
    [24]
    Woo H J et al 2009 Phys. Plasmas 16 023505
    [25]
    Woo H J et al 2006 J. Korean Phys. Soc. 48 260
    [26]
    Kang I J et al 2017 Curr. Appl. Phys. 17 358
    [27]
    Abdelli-Messaci S et al 2009 Spectrochim. Acta Part B-Atom.Spectrosc. 64 968
    [28]
    Schaffer C B, Brodeur A and Mazur E 2001 Meas. Sci.Technol. 12 1784
    [29]
    Hong S H et al 2016 Fusion Eng. Des. 109–111 872
    [30]
    Pitts R A et al 2017 Nucl. Mater. Energy 12 60
    [31]
    Pintsuk G et al 2007 Fusion Eng. Des. 82 1720
    [32]
    Leonard A W et al 1999 J. Nucl. Mater. 266–269 109
    [33]
    Lipschultz B et al 1986 J. Vac. Sci. Technol. A 4 1810
    [34]
    Chung K S, Hong S H and Chung K H 1995 Jpn. J. Appl.Phys. 34 4217
    [35]
    Stangeby P C 2000 The Plasma Boundary of Magnetic Fusion Devices (Bristol: IOP Publishing) pp 153–211
  • Related Articles

    [1]Luying NIU(牛璐莹), Hongrui CAO (曹宏睿), Kun XU(徐坤), Liqun HU(胡立群). Neutronic analysis of ITER radial x-ray camera[J]. Plasma Science and Technology, 2019, 21(2): 25601-025601. DOI: 10.1088/2058-6272/aaeba5
    [2]Adem ACIR, Esref BAYSAL. Monte Carlo calculations of the incineration of plutonium and minor actinides of laser fusion inertial confinement fusion fission energy (LIFE) engine[J]. Plasma Science and Technology, 2018, 20(7): 75601-075601. DOI: 10.1088/2058-6272/aab3c4
    [3]Yuqing YANG (杨宇晴), Xinjun ZHANG (张新军), Yanping ZHAO (赵燕平), Chengming QIN (秦成明), Yan CHENG (程艳), Yuzhou MAO (毛玉周), Hua YANG (杨桦), Jianhua WANG (王健华), Shuai YUAN (袁帅), Lei WANG (王磊), Songqing JU (琚松青), Gen CHEN (陈根), Xu DENG, (邓旭), Kai ZHANG (张开), Baonian WAN (万宝年), Jiangang LI (李建刚), Yuntao SONG (宋云涛), Xianzu GONG (龚先祖), Jinping QIAN (钱金平), Tao ZHANG (张涛). Recent ICRF coupling experiments on EAST[J]. Plasma Science and Technology, 2018, 20(4): 45102-045102. DOI: 10.1088/2058-6272/aaa599
    [4]Arif ULLAH, Majid KHAN, M KAMRAN, R KHAN, Zhengmao SHENG (盛正卯). Monte-Carlo simulation of a stochastic differential equation[J]. Plasma Science and Technology, 2017, 19(12): 125001. DOI: 10.1088/2058-6272/aa8f3f
    [5]Weili FAN (范伟丽), Zhengming SHENG (盛政明), Fucheng LIU (刘富成). Particle-in-cell/Monte Carlo simulation of filamentary barrier discharges[J]. Plasma Science and Technology, 2017, 19(11): 115401. DOI: 10.1088/2058-6272/aa808c
    [6]Zhigang ZHU (朱志刚), Qiyong ZHANG (张启勇), Yuntao SONG (宋云涛), Ming ZHUANG (庄明), Zhiwei ZHOU (周芷伟), Anyi CHENG (成安义), Ping ZHU (朱平). Present status and one upgrading method with a cold compressor of the EAST sub-cooling helium cryogenic system[J]. Plasma Science and Technology, 2017, 19(5): 55603-055603. DOI: 10.1088/2058-6272/aa58da
    [7]CHEN Gen (陈根), QIN Chengming (秦成明), MAO Yuzhou (毛玉周), ZHAO Yanping (赵燕平), YUAN Shuai (袁帅), ZHANG Xinjun (张新军). Power Compensation for ICRF Heating in EAST[J]. Plasma Science and Technology, 2016, 18(8): 870-874. DOI: 10.1088/1009-0630/18/8/14
    [8]DING Xuecheng (丁学成), ZHANG Zicai (张子才), LIANG Weihua (梁伟华), CHU Lizhi (褚立志), DENG Zechao (邓泽超), WANG Yinglong (王英龙). Monte Carlo Simulation of Laser-Ablated Particle Splitting Dynamic in a Low Pressure Inert Gas[J]. Plasma Science and Technology, 2016, 18(6): 641-646. DOI: 10.1088/1009-0630/18/6/10
    [9]WANG Fuqiong(王福琼), CHEN Yiping(陈一平), HU Liqun(胡立群). DIVIMP Modeling of Impurity Transport in EAST[J]. Plasma Science and Technology, 2014, 16(7): 642-649. DOI: 10.1088/1009-0630/16/7/03
    [10]WU Yongpeng(吴永鹏), TANG Bin(汤彬). Monte-Carlo Simulation of Response Functions for Natural Gamma-rays in LaBr3 Detector System with Complex Borehole Configurations[J]. Plasma Science and Technology, 2012, 14(6): 481-487. DOI: 10.1088/1009-0630/14/6/10
  • Cited by

    Periodical cited type(8)

    1. Li, J., Zhang, X., Tian, S. et al. Temporal evolution of self-organized spiral patterns formed in a liquid-electrode discharge sustained in atmospheric pressure air. Physics of Plasmas, 2025, 32(3): 032107. DOI:10.1063/5.0249081
    2. Zhang, J., Zhu, M., Zhang, C. Dynamic of mode transition in air surface micro-discharge plasma: reactive species in confined space. Plasma Science and Technology, 2025, 27(1): 015402. DOI:10.1088/2058-6272/ad862c
    3. Li, C., Feng, J., Wang, S. et al. Formation mechanism of bright and dark concentric-ring pattern in dielectric barrier discharge. Plasma Science and Technology, 2024, 26(8): 085401. DOI:10.1088/2058-6272/ad386a
    4. Zhang, X.-X., Jia, P.-Y., Ran, J.-X. et al. Discharge characteristics and parameter diagnosis of brush-shaped air plasma plumes under auxiliary discharge | [辅助放电下刷状空气等离子体羽的放电特性和参数诊断]. Wuli Xuebao/Acta Physica Sinica, 2024, 73(8): 085201. DOI:10.7498/aps.73.20231946
    5. Wu, J., Li, X., Ran, J. et al. Discharge aspects of a snake-like plasma plume generated by an atmospheric pressure plasma jet with variable argon flow rate. Plasma Processes and Polymers, 2023, 20(8): 2200188. DOI:10.1002/ppap.202200188
    6. Cai, Z., Wang, Z. Evaluation of Salt Matrix and Organic Additives in Solution Anode Glow Discharge Optical Emission Spectrometry: Taking Silver, Cadmium and Mercury as Examples. Atomic Spectroscopy, 2023, 44(5): 354-364. DOI:10.46770/AS.2023.190
    7. Kolobov, V.I., Golubovskii, Y.B. The principle of minimal power. Plasma Sources Science and Technology, 2022, 31(9): 094003. DOI:10.1088/1361-6595/ac8b31
    8. Chen, J., Zhang, F., Jia, P. et al. Argon plume transition from a hollow swell to a diffuse swell with increasing amplitude of a trapezoidal voltage. Plasma Science and Technology, 2022, 24(8): 085402. DOI:10.1088/2058-6272/ac6570

    Other cited types(0)

Catalog

    Article views (133) PDF downloads (39) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return