Advanced Search+
Ziang TONG (佟子昂), Jianwen WU (武建文), Wei JIN (金巍), Jun CHEN (陈均). Properties of intermediate-frequency vacuum arc in sinusoidal curved contact and butt contact[J]. Plasma Science and Technology, 2020, 22(2): 24004-024004. DOI: 10.1088/2058-6272/ab5b19
Citation: Ziang TONG (佟子昂), Jianwen WU (武建文), Wei JIN (金巍), Jun CHEN (陈均). Properties of intermediate-frequency vacuum arc in sinusoidal curved contact and butt contact[J]. Plasma Science and Technology, 2020, 22(2): 24004-024004. DOI: 10.1088/2058-6272/ab5b19

Properties of intermediate-frequency vacuum arc in sinusoidal curved contact and butt contact

Funds: This work is supported by National Natural Science Foundation of China (Nos. 51677002 and 51937004), Civil Aircraft Special Research and Technology Research Project (MJ-2017-S-46), State Key Laboratory of Reliability and Intelligence of Electrical Equipment (No. EERIKF004), Hebei University of Technology and selected from the 1st International Symposium on Insulation and Discharge Computation for Power Equipment.
More Information
  • Received Date: August 21, 2019
  • Revised Date: November 21, 2019
  • Accepted Date: November 24, 2019
  • In this report, two new contact structures of a vacuum interrupter with a sinusoidal curved surface are proposed to improve the capability by increasing the surface area. The experimental investigation of vacuum arc at intermediate frequency (360–800 Hz) was conducted and the results were compared with a butt contact with the same contact diameter (41 mm) and the same material. By analyzing the arc behavior, arc voltage characteristics, arc energy, current interrupting capacity, ablation of the anode contact and condensation of the arc products at a 3 mm gap, the differences in their vacuum arc characteristics were determined. The correlations of their arc energy with the amplitude and the frequency of the current were also achieved. Analysis suggests that the ruled curved contact has strong application potentiality because of its low arc energy, low arc voltage noise and arc voltage peak, light ablation on the surface of the anode contact and high interrupting capacity.
  • [1]
    Liu W 2016 Sci. Technol. Vis. 100 (in Chinese) doi: 10.19694/j.cnki.issn2095-2457.2016.22.062
    [2]
    Song X et al 2018 Plasma Sci. Technol. 20 025402
    [3]
    Wang L J et al 2008 Proc. CSEE 28 154 (in Chinese)
    [4]
    Yu L et al 2008 Analysis of vacuum arc motion characteristic of cup-type transverse magnetic field contacts based on orthogonal design Proc. 2008 23rd Int. Symp. on Discharges and Electrical Insulation in Vacuum (Bucharest, Romania) vol 2008 (Piscataway, NJ: IEEE) p 288
    [5]
    Xiu S X, Jin L and Wang J M 1997 Power Syst. Technol. 21 29 (in Chinese)
    [6]
    Wang Y and Wang J M 1987 Proc. CSEE 7 36 (in Chinese)
    [7]
    Liao M F et al 2016 IEEE Trans. Plasma Sci. 44 2455
    [8]
    Chen Y et al 2017 Plasma Sci. Technol. 19 064003
    [9]
    Wang J and Wu J W 2009 Proc. CSEE 25 126 (in Chinese)
    [10]
    Hardt N et al 2002 Eur. Trans. Electr. Power 12 321
    [11]
    Pang X H et al 2018 Plasma Sci. Technol. 20 085502
    [12]
    Liao M F et al 2017 IEEE Trans. Plasma Sci. 45 2172
    [13]
    Zhu L Y and Wu J W 2011 Proc. CSEE 31 131 (in Chinese)
    [14]
    Wang J M and Yuan S 2001 High-Capacity Vacuum Switch Theory and Product Development (Xi’an: Xi’an Jiaotong University Press) (in Chinese)
    [15]
    Lee H G et al 2012 Study on design of axial magnetic field electrodes depending on electrode diameter and current Proc. 2012 25th Int. Symp. on Discharges and Electrical Insulation in Vacuum (Tomsk, Russia) vol 489 (Piscataway,NJ: IEEE)
    [16]
    Henon A et al 2002 3D finite element simulation and synthetic tests of vacuum interrupters with axial magnetic field contacts Proc. 20th Int. Symp. on Discharges and Electrical Insulation in Vacuum (Tours, France) (Piscataway,NJ: IEEE)
    [17]
    Zhou J Y, Cheng L C and Qin H S 1990 J. Huazhong Univ.Sci. Technol. 4 9
    [18]
    Jiang Z X et al 2012 Proc. CSEE 32 152
    [19]
    Liu Z Y et al 2006 High Voltage Appar. 42 169 (in Chinese)
    [20]
    Wang L H et al 2012 Proc. CSEE 32 173 (in Chinese)
    [21]
    Boxman R L 1975 J. Appl. Phys. 46 4701
    [22]
    Miller H C 1985 IEEE Trans. Plasma Sci. 13 242
    [23]
    Zaiucki Z 1996 Influence of current frequency on the dynamic voltage/current characteristics of vacuum arcs Proc. 17th Int. Symp. on Discharges and Electrical Insulation in Vacuum (Berkeley, CA, USA) (Piscataway, NJ: IEEE)(https://doi.org/10.1109/DEIV.1996.545351
  • Related Articles

    [1]Tao WANG, Shizhao WEI, Sergio BRIGUGLIO, Gregorio VLAD, Fulvio ZONCA, Zhiyong QIU. Nonlinear dynamics of the reversed shear Alfvén eigenmode in burning plasmas[J]. Plasma Science and Technology, 2024, 26(5): 053001. DOI: 10.1088/2058-6272/ad15e0
    [2]Haochen FAN, Guoqiang LI, Jinping QIAN, Xuexi ZHANG, Xiaohe WU, Yuqi CHU, Xiang ZHU, Hui LIAN, Haiqing LIU, Bo LYU, Yifei JIN, Qing ZANG, Jia HUANG. Kinetic equilibrium reconstruction with internal safety factor profile constraints on EAST tokamak[J]. Plasma Science and Technology, 2024, 26(4): 045102. DOI: 10.1088/2058-6272/ad0d48
    [3]Yichao LI, Jia FU, Yao HUANG, Jinping QIAN, Ang TI, Cheonho BAE, Shengyu FU, Jiankang LI, Yongqi GU, Zhengping LUO, Jinseok KO, Yongqing WEI, Dongmei LIU, Bingjia XIAO, Bo LYU, Xianzu GONG, Baonian WAN. Development of an upgraded motional Stark effect diagnostic system on EAST tokamak[J]. Plasma Science and Technology, 2023, 25(4): 045101. DOI: 10.1088/2058-6272/ac9b9e
    [4]Yan CHAO, Wei ZHANG, Liqun HU, Kangning GENG, Liqing XU, Tao ZHANG, Qing ZANG, Tianfu ZHOU. Observations of mode frequency increase and the appearance of ITB during the m/n = 1/1 kink mode in EAST high electron temperature long pulse operation[J]. Plasma Science and Technology, 2023, 25(2): 025107. DOI: 10.1088/2058-6272/ac92d0
    [5]Linghan WAN (万凌寒), Zhoujun YANG (杨州军), Ruobing ZHOU (周若冰), Xiaoming PAN (潘晓明), Chi ZHANG (张弛), Xianli XIE (谢先立), Bowen RUAN (阮博文). Design of Q-band FMCW reflectometry for electron density profile measurement on the Joint TEXT tokamak[J]. Plasma Science and Technology, 2017, 19(2): 25602-025602. DOI: 10.1088/2058-6272/19/2/025602
    [6]QU Hao (屈浩), ZHANG Tao (张涛), ZHANG Shoubiao (张寿彪), WEN Fei (文斐), WANG Yumin (王嵎民), KONG Defeng (孔德峰), HAN Xiang (韩翔), YANG Yao (杨曜), GAO Yu (高宇), HUANG Canbin (黄灿斌), CAI Jianqing (蔡剑青), GAO Xiang (高翔), the EAST team. Q-Band X-Mode Reflectometry and Density Profile Reconstruction[J]. Plasma Science and Technology, 2015, 17(12): 985-990. DOI: 10.1088/1009-0630/17/12/01
    [7]T. S. HAHM. Ion Heating from Nonlinear Landau Damping of High Mode Number Toroidal Alfvén Eigenmodes[J]. Plasma Science and Technology, 2015, 17(7): 534-538. DOI: 10.1088/1009-0630/17/7/02
    [8]ZHANG Shoubiao(张寿彪), GAO Xiang(高翔), LING Bili(凌必利), WANG Yumin(王嵎民), ZHANG Tao(张涛), HAN Xiang(韩翔), LIU Zixi(刘子奚), BU Jingliang(布景亮), LI Jiangang(李建刚), EAST team. Density Profile and Fluctuation Measurements by Microwave Reflectometry on EAST[J]. Plasma Science and Technology, 2014, 16(4): 311-315. DOI: 10.1088/1009-0630/16/4/02
    [9]ZHANG Chongyang (张重阳), LIU Ahdi (刘阿娣), LI Hong (李弘), LI Bin (李斌), et al.. X-Mode Frequency Modulated Density Profile Reflectometer on EAST Tokamak[J]. Plasma Science and Technology, 2013, 15(9): 857-862. DOI: 10.1088/1009-0630/15/9/04
    [10]XU Chao (许超), OU Yongsheng (欧勇盛), Eugenio SCHUSTER, and YU Xin(于欣). Computing Open-Loop Optimal Control of the q-Profile in Ramp-Up Tokamak Plasmas Using the Minimal-Surface Theory[J]. Plasma Science and Technology, 2013, 15(5): 403-410. DOI: 10.1088/1009-0630/15/5/02
  • Cited by

    Periodical cited type(10)

    1. Tao, J., Li, C., Cao, X. et al. Modeling of the Arc Characteristics inside a Thermal Laminar Plasma Torch with Different Gas Components. Processes, 2024, 12(6): 1207. DOI:10.3390/pr12061207
    2. Hu, Y.-H., Sun, S.-R., Meng, X. et al. Experimental study on the life and performance of an improved DC arc plasma torch. Journal of Physics D: Applied Physics, 2024, 57(20): 205206. DOI:10.1088/1361-6463/ad256b
    3. Cao, X., He, Y., Tao, J. et al. Influence of Novel Anode Structure on the Heat Flow Characteristics and Jet Stability of Pure Nitrogen Laminar Torch. Plasma Chemistry and Plasma Processing, 2024. DOI:10.1007/s11090-024-10526-z
    4. Cao, X., Zhang, J., Guo, W. et al. Effects of Gas Components on the Jet Characteristics of a DC Plasma Torch by Using Orthogonal Test Method. IEEE Transactions on Plasma Science, 2024, 52(5): 1685-1698. DOI:10.1109/TPS.2024.3393414
    5. Cao, X., Wang, L., He, R. et al. Characterization of Fe-Based Layers Deposited by Laminar Plasma Cladding on Low-Carbon Steel. Journal of Thermal Spray Technology, 2023, 32(7): 2104-2111. DOI:10.1007/s11666-023-01634-x
    6. Zhang, H.-Y., Deng, S.-J., Liu, S.-H. et al. Study of annular coaxial powder feeding effect on the characteristics of laminar plasma jet and atmospheric cluster deposition. Surface and Coatings Technology, 2023. DOI:10.1016/j.surfcoat.2023.129604
    7. Cao, X., Guo, W., Hu, G. et al. Design and Experimental Jet Characteristics of an Optimized DC Plasma Torch. IEEE Transactions on Plasma Science, 2022, 50(12): 4873-4881. DOI:10.1109/TPS.2022.3222690
    8. Zhang, H., Mauer, G., Liu, S. et al. Modeling of the Effect of Carrier Gas Injection on the Laminarity of the Plasma Jet Generated by a Cascaded Spray Gun. Coatings, 2022, 12(10): 1416. DOI:10.3390/coatings12101416
    9. Cao, X., He, R., Xu, H. et al. Experimental Study on the Design and Characteristics of an Optimized Thermal Plasma Torch with Two Gas Injections. Plasma Chemistry and Plasma Processing, 2021, 41(4): 1169-1181. DOI:10.1007/s11090-021-10178-3
    10. Cao, X., Li, C., He, R. et al. Study on the influences of the anode structures on the jet characteristics of a laminar plasma torch. Plasma Research Express, 2020, 2(1): 018001. DOI:10.1088/2516-1067/ab6c85

    Other cited types(0)

Catalog

    Article views (167) PDF downloads (123) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return