Advanced Search+
A KRÄMER-FLECKEN, X HAN, M OTTE, G ANDA, S A BOZHENKOV, D DUNAI, G FUCHERT, J GEIGER, O GRULKE, E PASCH, E R SCOTT, E TRIER, M VÉCSEI, T WINDISCH, S ZOLETNIK, the W7-X Team. Investigation of turbulence rotation in the SOL and plasma edge of W7-X for different magnetic configurations[J]. Plasma Science and Technology, 2020, 22(6): 64004-064004. DOI: 10.1088/2058-6272/ab770c
Citation: A KRÄMER-FLECKEN, X HAN, M OTTE, G ANDA, S A BOZHENKOV, D DUNAI, G FUCHERT, J GEIGER, O GRULKE, E PASCH, E R SCOTT, E TRIER, M VÉCSEI, T WINDISCH, S ZOLETNIK, the W7-X Team. Investigation of turbulence rotation in the SOL and plasma edge of W7-X for different magnetic configurations[J]. Plasma Science and Technology, 2020, 22(6): 64004-064004. DOI: 10.1088/2058-6272/ab770c

Investigation of turbulence rotation in the SOL and plasma edge of W7-X for different magnetic configurations

Funds: This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training program 2014–2018 and 2019–2020 under grant agreement no. 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.
More Information
  • Received Date: October 31, 2019
  • Revised Date: February 14, 2020
  • Accepted Date: February 16, 2020
  • TheW7-X stellarator is optimized with respect to neoclassical transport. Therefore turbulent transport plays an important role. It is equipped with an inertial cooled graphite divertor which intersects the island chain at the plasma edge depending on the magnetic configuration. Additional control coils and the plasma current modify the iota profile at the plasma edge and shift the position of the island chain. To monitor the effects on the poloidal propagation velocity in the scrape-off layer (SOL) and the plasma edge, an O-mode Poloidal Correlation Reflectometer (PCR) is used which simultaneously monitors the propagation of low-k turbulence. Operating in the density range of 0.6×1019m−3 to 2×1019m−3 it covers a large part of the SOL and the plasma edge and allows for the experimental determination in the last closed flux surface (LCFS) and the associated shear layer in low to middensity discharges. In this paper it is shown that the propagation in the shear layer and its vicinity is determined best, when based on an elliptical model. Different magnetic configurations with magnetic edge topology of five independent islands for ι=1 and six linked islands for ι=0.81 are investigated. Also the effects of the plasma current and additional control coils on the edge magnetic topology are studied. The coherence spectra of antenna pairs for different poloidal separations is investigated. Using a decomposition method for the measured coherence spectra the characterization of turbulence spectra is possible with respect to e.g. broad band turbulence and quasi coherent modes. A strong reduction of the broad band turbulence is observed in the vicinity of the LCFS which is evidence for the suppression of low-k turbulence at the shear layer.
  • [1]
    Naulin V 2007 J. Nucl. Mater. 363–365 24–31 Plasma-Surface Interactions-17
    [2]
    Nold B, Manz P, Ribeiro T T, Fuchert G, Birkenmeier G, Müller H W, Ramisch M, Scott B D and Stroth U 2014 Phys. Plasmas 21 102304
    [3]
    Gusakov E Z and Yakovlev B O 2002 Plasma Phys. Control.Fusion 44 2525–37
    [4]
    Briggs B H, Phillips G J and Shinn D H 1950 Proceedings of the Physical Society. Section B 63 106–21
    [5]
    Phillips G J and Spencer M 1955 Proceedings of the Physical Society. Section B 68 481–92
    [6]
    Conway G D and Elliott J A 1987 J. Phys. E: Sci. Instrum. 20 1341–50
    [7]
    Klinger T et al 2017 Plasma Phys. Controlled Fusion 59 014018
    [8]
    Wolf R C et al 2017 Nucl. Fusion 57 102020
    [9]
    Krämer-Flecken A et al 2017 Nucl. Fusion 57 066023
    [10]
    Windisch T et al 2017 Plasma Phys. Controlled Fusion 59 105002
    [11]
    Krämer-Flecken A et al 2019 Plasma Phys. Controlled Fusion 61 054003
    [12]
    Krämer-Flecken A, Soldatov S, Vowinkel B and Müller P 2010 Rev. Sci. Instrum. 81 113502
    [13]
    Windisch T, Grulke O and Klinger T 2006 Phys. Plasmas 13 122303
    [14]
    Nold B, Conway G D, Happel T, Müller H W, Ramisch M,Rohde V, Stroth U and (ASDEX Upgrade the Team) 2010 Plasma Phys. Controlled Fusion 52 065005
    [15]
    Taylor G I 1938 Proceedings of the Royal Society of London.Series A-Mathematical and Physical Sciences 164 476–90
    [16]
    He G-W and Zhang J-B 2006 Phys. Rev. E 73 055303
    [17]
    He G, Jin G and Yang Y 2017 Annual Review of Fluid Mechanics 49 51–70
    [18]
    Pasch E, Beurskens M N A, Bozhenkov S A, Fuchert G,Knauer J and Wolf R C 2016 Rev. Sci. Instrum. 87 11E729
    [19]
    Bozhenkov S A et al 2017 J. Instrum. 12 P10004 P10004–10004
    [20]
    Hirshman S P, Shaing K C, van Rij W I, Beasley C O and Crume E C 1986 The Physics of Fluids 29 2951–9
    [21]
    Bozhenkov S A, Geiger J, Grahl M, Kißlinger J, Werner A and Wolf R C 2013 Fusion Eng. Des. 88 2997–3006
    [22]
    Soldatov S, Krämer-Flecken A and Zorenko O 2011 Rev. Sci.Instrum. 82 033513
    [23]
    Han X, Krämer-Flecken A, Windisch T, Hirsch M, Fuchert G,Geiger J, Grulke O, Liu S and Rahbarnia K 2019 Nucl.Fusion 60 016011
  • Related Articles

    [1]Zhongtian WANG (王中天), Huidong LI (李会东), Xueke WU (吴雪科). Loss-cone instabilities for compact fusion reactor and field-reversed configuration[J]. Plasma Science and Technology, 2019, 21(2): 25101-025101. DOI: 10.1088/2058-6272/aaead9
    [2]Haiying WEI (魏海英), Hongge GUO (郭红革), Meili ZHOU (周美丽), Lei YUE (岳蕾), Qiang CHEN (陈强). DBD plasma assisted atomic layer deposition alumina barrier layer on self-degradation polylactic acid film surface[J]. Plasma Science and Technology, 2019, 21(1): 15503-015503. DOI: 10.1088/2058-6272/aae0ee
    [3]A BOUCHIKHI. Modeling of a DC glow discharge in a neon– xenon gas mixture at low pressure and with metastable atom densities[J]. Plasma Science and Technology, 2017, 19(9): 95403-095403. DOI: 10.1088/2058-6272/aa74ad
    [4]HU Chundong (胡纯栋), CHEN Yu (陈宇), XU Yongjian (许永建), YU Ling (于玲), LI Xiang (栗翔), ZHANG Weitang (张为堂), NBI Group. Analysis of the Pipe Heat Loss of the Water Flow Calorimetry System in EAST Neutral Beam Injector[J]. Plasma Science and Technology, 2016, 18(11): 1139-1142. DOI: 10.1088/1009-0630/18/11/13
    [5]WANG Jingting (王婧婷), CAO Xu (曹栩), ZHANG Renxi (张仁熙), GONG Ting (龚挺), HOU Huiqi (侯惠奇), CHEN Shanping (陈善平), ZHANG Ruina (张瑞娜). Effect of Water Vapor on Toluene Removal in Catalysis-DBD Plasma Reactors[J]. Plasma Science and Technology, 2016, 18(4): 370-375. DOI: 10.1088/1009-0630/18/4/07
    [6]F. MARCHAL, M. YOUSFI, N. MERBAHI, G. WATTIEAUX, A. PIQUEMAL. Quantitative Determination of Density of Ground State Atomic Oxygen from Both TALIF and Emission Spectroscopy in Hot Air Plasma Generated by Microwave Resonant Cavity[J]. Plasma Science and Technology, 2016, 18(3): 259-265. DOI: 10.1088/1009-0630/18/3/08
    [7]WU Hanyu(吴撼宇), ZENG Zhengzhong(曾正中), WANG Liangping(王亮平), GUO Ning(郭宁). Experimental Study of Current Loss of Stainless Steel Magnetically Insulated Transmission Line with Current Density at MA/cm Level[J]. Plasma Science and Technology, 2014, 16(6): 625-628. DOI: 10.1088/1009-0630/16/6/16
    [8]WU Guojiang (吴国将), ZHANG Xiaodong (张晓东). Calculations of the Ion Orbit Loss Region at the Edge of EAST[J]. Plasma Science and Technology, 2012, 14(9): 789-793. DOI: 10.1088/1009-0630/14/9/03
    [9]K. T. A. L. BURM. The Isentropic Exponent of Single-Ionized Mono-Atomic Plasmas[J]. Plasma Science and Technology, 2012, 14(8): 699-701. DOI: 10.1088/1009-0630/14/8/03
    [10]LI Jibo(李吉波), DING Siye(丁斯晔), WU Bin(吴斌), HU Chundong(胡纯栋). Simulations of Neutral Beam Ion Ripple Loss on EAST[J]. Plasma Science and Technology, 2012, 14(1): 78-82. DOI: 10.1088/1009-0630/14/1/17
  • Cited by

    Periodical cited type(7)

    1. Wang, Z., Li, R., Cao, B. et al. 3D hybrid simulation of postarc sheath expansion with nonuniform residual plasmas. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2024, 42(5): 053008. DOI:10.1116/6.0003859
    2. Cheng, X., Chen, H., Ge, G. et al. Influence of the vapor shield potential control on the post-arc sheath development in vacuum interrupters. Vacuum, 2024. DOI:10.1016/j.vacuum.2024.112957
    3. Zhang, W., Cheng, X., Ge, G. et al. PIC Numerical Calculation of the Effect of Self-Voltage Sharing Configuration on the Post Arc Particle Transport Characteristics in High-Voltage Vacuum Interrupters. 2024. DOI:10.1109/ICEPE-ST61894.2024.10792559
    4. Wang, L., Chen, Z., Wang, D. et al. Two-Dimensional Particle-in-Cell/Monte Carlo Collisional Simulation of the Post-Arc Breakdown in Vacuum Circuit Breakers. IEEE Transactions on Plasma Science, 2024, 52(8): 3228-3236. DOI:10.1109/TPS.2024.3449271
    5. Chen, H., Cheng, X., Ge, G. et al. Influence of Main Shield Voltage Distribution Configuration on the Post-arc Sheath Development of Vacuum Interrupters. Lecture Notes in Electrical Engineering, 2024. DOI:10.1007/978-981-99-7413-9_6
    6. Tang, Z., Xu, Z. Research on Three-Dimensional Numerical Simulation Method of Low Voltage Cable Arc. Lecture Notes in Electrical Engineering, 2023. DOI:10.1007/978-981-99-3404-1_76
    7. Shi, Q., Yang, P., Ye, J. et al. Particle Simulation of Near-Cathode Sheath in Vacuum Arc. Lecture Notes in Electrical Engineering, 2023. DOI:10.1007/978-981-99-0357-3_85

    Other cited types(0)

Catalog

    Article views (148) PDF downloads (88) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return