Advanced Search+
Yulei WANG (王雨雷), Feng YUAN (袁丰), Jian LIU (刘健). A relativistic canonical symplectic particle-in-cell method for energetic plasma analysis[J]. Plasma Science and Technology, 2020, 22(6): 65001-065001. DOI: 10.1088/2058-6272/ab770e
Citation: Yulei WANG (王雨雷), Feng YUAN (袁丰), Jian LIU (刘健). A relativistic canonical symplectic particle-in-cell method for energetic plasma analysis[J]. Plasma Science and Technology, 2020, 22(6): 65001-065001. DOI: 10.1088/2058-6272/ab770e

A relativistic canonical symplectic particle-in-cell method for energetic plasma analysis

Funds: This research is supported by National Natural Science Foundation of China (Nos. 11805203, 11775222, 11575185), the National Magnetic Confinement Fusion Energy Research Project of China (2015GB111003), and the Key Research Program of Frontier Sciences CAS (QYZDB-SSW-SYS004).
More Information
  • Received Date: December 23, 2019
  • Revised Date: February 15, 2020
  • Accepted Date: February 16, 2020
  • A relativistic canonical symplectic particle-in-cell (RCSPIC) method for simulating energetic plasma processes is established. By use of the Hamiltonian for the relativistic Vlasov–Maxwell system, we obtain a discrete relativistic canonical Hamiltonian dynamical system, based on which the RCSPIC method is constructed by applying the symplectic temporal discrete method. Through a 106-step numerical test, the RCSPIC method is proven to possess long-term energy stability. The ability to calculate energetic plasma processes is shown by simulations of the reflection processes of a high-energy laser (1×1020Wcm−2) on the plasma edge.
  • [1]
    Qin H et al 2015 Nucl. Fusion 56 014001
    [2]
    Jia Q et al 2017 Phys. Plasmas 24 093103
    [3]
    Wilson F et al 2016 Phys. Plasmas 23 032302
    [4]
    Birdsall C et al 1985 Plasma Physics via Computer Simulation (New York: McGraw-Hill)
    [5]
    Hairer E et al 2002 Geometric Numerical Integration:Structure-preserving algorithms for Ordinary Differential equations (New York: Springer) (https://doi.org/10.1007/978-3-662-05018-7)
    [6]
    Xiao J Y et al 2013 Phys. Plasmas 20 102517
    [7]
    Xiao J Y et al 2015 Phys. Plasmas 22 092305
    [8]
    Xiao J Y et al 2017 Phys. Plasmas 24 062112
    [9]
    He Y et al 2015 Phys. Plasmas 22 124503
    [10]
    Kraus M et al 2015 Physica D 310 37
    [11]
    Kraus M et al 2013 (arXiv:1307.5665)
    [12]
    McLachlan R et al 2006 J. Phys. A: Math. Gen. 39 5251
    [13]
    Candy J et al 1991 J. Comput. Phys. 92 230
    [14]
    Qin H et al 2008 Phys. Rev. Lett. 100 035006
    [15]
    Qin H et al 2013 Phys. Plasmas 20 084503
    [16]
    Guan X Y et al 2010 Phys. Plasmas 17 092502
    [17]
    Zhang R L et al 2015 Phys. Plasmas 22 044501
    [18]
    Zhang R L et al 2014 Phys. Plasmas 21 032504
    [19]
    He Y et al 2016 J. Comput. Phys. 305 172
    [20]
    He Y et al 2015 J. Comput. Phys. 281 135
    [21]
    Channell P J et al 1990 Nonlinearity 3 231
    [22]
    Channell P J et al 2014 Comput. Sci. Discovery 7 015001
    [23]
    He Y et al 2016 Phys. Lett. A 381 568
    [24]
    Squire J et al 2012 Phys. Plasmas 19 084501
    [25]
    Ellison C L et al 2015 Plasma Phys. Controlled Fusion 57 054007
    [26]
    Li J X et al 2011 Phys. Plasmas 18 052902
    [27]
    McLachlan R I et al 1992 Nonlinearity 5 541
    [28]
    Shadwick B A et al 2014 Phys. Plasmas 21 055708
    [29]
    Zhang R L et al 2016 Phys. Rev. E 94 013205
    [30]
    Zhu B B et al 2016 J. Comput. Phys. 322 387
    [31]
    Zhang R L et al 2018 Phys. Plasmas 25 022117
    [32]
    Morrison P J et al 1982 AIP Conf. Proc. 88 13
    [33]
    Morrison P J et al 1980 Phys. Lett. A 80 383
    [34]
    Marsden J E et al 1982 Physica D 4 394
    [35]
    Kruer W 1988 The Physics of Laser Plasma Interactions(Reading, MA: Addison-Wesley)
    [36]
    Wang Y L et al 2016 Phys. Plasmas 23 062505
    [37]
    Van A J A et al 1959 Nature 183 430
    [38]
    Xiao J Y et al 2018 Plasma Sci. Technol. 20 110501
    [39]
    Koen E J et al 2012 Phys. Plasmas 19 042101
  • Related Articles

    [1]Jingyu REN (任景俞), Nan JIANG (姜楠), Kefeng SHANG (商克峰), Na LU (鲁娜), Jie LI (李杰), Yan WU (吴彦). Evaluation of trans-ferulic acid degradation by dielectric barrier discharge plasma combined with ozone in wastewater with different water quality conditions[J]. Plasma Science and Technology, 2019, 21(2): 25501-025501. DOI: 10.1088/2058-6272/aaef65
    [2]Linsheng WEI(魏林生), Xin LIANG (梁馨), Yafang ZHANG (章亚芳). Numerical investigation on the effect of gas parameters on ozone generation in pulsed dielectric barrier discharge[J]. Plasma Science and Technology, 2018, 20(12): 125505. DOI: 10.1088/2058-6272/aadca6
    [3]Yuchuan QIN (秦豫川), Shulou QIAN (钱树楼), Cheng WANG (王城), Weidong XIA (夏维东). Effects of nitrogen on ozone synthesis in packed-bed dielectric barrier discharge[J]. Plasma Science and Technology, 2018, 20(9): 95501-095501. DOI: 10.1088/2058-6272/aac203
    [4]Ernest GNAPOWSKI, Sebastian GNAPOWSKI, Jaros|aw PYTKA. The impact of dielectrics on the electrical capacity, concentration, efficiency ozone generation for the plasma reactor with mesh electrodes[J]. Plasma Science and Technology, 2018, 20(8): 85505-085505. DOI: 10.1088/2058-6272/aac1b6
    [5]Ying CAO (曹颖), Jie LI (李杰), Nan JIANG (姜楠), Yan WU (吴彦), Kefeng SHANG (商克峰), Na LU (鲁娜). The structure optimization of gas-phase surface discharge and its application for dye degradation[J]. Plasma Science and Technology, 2018, 20(5): 54018-054018. DOI: 10.1088/2058-6272/aaa3d5
    [6]Zelong ZHANG (张泽龙), Jie SHEN (沈洁), Cheng CHENG (程诚), Zimu XU (许子牧), Weidong XIA (夏维东). Generation of reactive species in atmospheric pressure dielectric barrier discharge with liquid water[J]. Plasma Science and Technology, 2018, 20(4): 44009-044009. DOI: 10.1088/2058-6272/aaa437
    [7]ZHANG Yu (张宇), LIU Lijuan (刘莉娟), LI Ben (李犇), OUYANG Jiting (欧阳吉庭). Wire-to-Plate Surface Dielectric Barrier Discharge and Induced Ionic Wind[J]. Plasma Science and Technology, 2016, 18(6): 634-640. DOI: 10.1088/1009-0630/18/6/09
    [8]WEI Linsheng (魏林生), PENG Bangfa (彭邦发), LI Ming (李鸣), ZHANG Yafang (章亚芳), HU Zhaoji (胡兆吉). Dynamic Characteristics of Positive Pulsed Dielectric Barrier Discharge for Ozone Generation in Air[J]. Plasma Science and Technology, 2016, 18(2): 147-156. DOI: 10.1088/1009-0630/18/2/09
    [9]QU Guangzhou(屈广周), LIANG Dongli(梁东丽), QU Dong(曲东), HUANG Yimei(黄懿梅), LI Jie(李杰). Comparison Between Dielectric Barrier Discharge Plasma and Ozone Regenerations of Activated Carbon Exhausted with Pentachlorophenol[J]. Plasma Science and Technology, 2014, 16(6): 608-613. DOI: 10.1088/1009-0630/16/6/13
    [10]LIU Wenzheng(刘文正), LI Chuanhui(李传辉). Study on the Generation Characteristics of Dielectric Barrier Discharge Plasmas on Water Surface[J]. Plasma Science and Technology, 2014, 16(1): 26-31. DOI: 10.1088/1009-0630/16/1/06
  • Cited by

    Periodical cited type(17)

    1. Mikeš, J., Pekárek, S., Hanuš, O. Combined effects of electrode geometry and airflow streamlines patterns on ozone production of a cylindrical dielectric barrier discharge. Electrochemistry Communications, 2025. DOI:10.1016/j.elecom.2025.107873
    2. Zhang, J., Zhu, M., Zhang, C. Dynamic of mode transition in air surface micro-discharge plasma: reactive species in confined space. Plasma Science and Technology, 2025, 27(1): 015402. DOI:10.1088/2058-6272/ad862c
    3. Ali, N.N., Alayan, H.M., AbdulRazak, A.A. et al. Modeling and optimizing phenol degradation in aqueous solution using post discharge DBD plasma treatment. Desalination and Water Treatment, 2025. DOI:10.1016/j.dwt.2025.100993
    4. Haosheng, J., Shiyun, L., Hengrui, L. et al. Discharge Characteristics of DBD with Contact Electrodes at Atmospheric Pressure in Quiescent Air. Lecture Notes in Electrical Engineering, 2024. DOI:10.1007/978-981-99-7405-4_28
    5. Giotis, K., Svarnas, P., Amanatides, E. et al. Ionization wave propagation and cathode sheath formation due to surface dielectric-barrier discharge sustained in pulsed mode. Plasma Science and Technology, 2023, 25(11): 115402. DOI:10.1088/2058-6272/acdb52
    6. Tański, M., Reza, A., Przytuła, D. et al. Ozone Generation by Surface Dielectric Barrier Discharge. Applied Sciences (Switzerland), 2023, 13(12): 7001. DOI:10.3390/app13127001
    7. Mikeš, J., Soukup, I., Pekárek, S. A 3D Numerical Study of the Surface Dielectric Barrier Discharge Initial Phase. Mathematics, 2023, 11(4): 1025. DOI:10.3390/math11041025
    8. Mikeš, J., Pekárek, S., Hanuš, O. Surface Dielectric Barrier Discharge in a Cylindrical Configuration–Effect of Airflow Orientation to the Microdischarges. Ozone: Science and Engineering, 2023, 45(1): 2-18. DOI:10.1080/01919512.2021.2016369
    9. Zhao, Q., Mao, B., Bai, X. et al. Experimental investigation of the discharge and thermal characteristics of an alternating current dielectric-barrier discharge plasma reactor. Applied Thermal Engineering, 2022. DOI:10.1016/j.applthermaleng.2022.119276
    10. Xu, H., Zhu, F., Liu, Y. et al. Effects of the ground-electrode temperature on the plasma physicochemical processes and biological inactivation functions involved in surface dielectric barrier discharge. Plasma Sources Science and Technology, 2022, 31(11): 115010. DOI:10.1088/1361-6595/ac9d63
    11. Huang, L., Guo, L., Qi, Y. et al. Bactericidal effect of surface plasma under different discharge modes. Physics of Plasmas, 2021, 28(12): 123501. DOI:10.1063/5.0068094
    12. ZENG, X., ZHANG, Y., GUO, L. et al. Ozone generation enhanced by silica catalyst in packed-bed DBD reactor. Plasma Science and Technology, 2021, 23(8): 085501. DOI:10.1088/2058-6272/ac0244
    13. Pekárek, S., Mikeš, J., Červenka, M. et al. Air Supply Mode Effects on Ozone Production of Surface Dielectric Barrier Discharge in a Cylindrical Configuration. Plasma Chemistry and Plasma Processing, 2021, 41(3): 779-792. DOI:10.1007/s11090-021-10154-x
    14. Xi, W., Wang, W., Liu, Z. et al. Mode transition of air surface micro-discharge and its effect on the water activation and antibacterial activity. Plasma Sources Science and Technology, 2020, 29(9): 095013. DOI:10.1088/1361-6595/aba7ef
    15. Homola, T., Prukner, V., Hoffer, P. et al. Multi-hollow surface dielectric barrier discharge: An ozone generator with flexible performance and supreme efficiency. Plasma Sources Science and Technology, 2020, 29(9): 095014. DOI:10.1088/1361-6595/aba987
    16. Yuan, D., Zhang, G., Ling, Z. et al. Characteristics of temperature distribution in atmospheric pulsed surface dielectric barrier discharge for ozone production. Vacuum, 2020. DOI:10.1016/j.vacuum.2020.109351
    17. Mikheyev, P.A., Demyanov, A.V., Kochetov, I.V. et al. Ozone and oxygen atoms production in a dielectric barrier discharge in pure oxygen and O2/CH4 mixtures. Modeling and experiment. Plasma Sources Science and Technology, 2020, 29(1): 015012. DOI:10.1088/1361-6595/ab5da3

    Other cited types(0)

Catalog

    Article views (121) PDF downloads (85) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return