Advanced Search+
Yulei WANG (王雨雷), Feng YUAN (袁丰), Jian LIU (刘健). A relativistic canonical symplectic particle-in-cell method for energetic plasma analysis[J]. Plasma Science and Technology, 2020, 22(6): 65001-065001. DOI: 10.1088/2058-6272/ab770e
Citation: Yulei WANG (王雨雷), Feng YUAN (袁丰), Jian LIU (刘健). A relativistic canonical symplectic particle-in-cell method for energetic plasma analysis[J]. Plasma Science and Technology, 2020, 22(6): 65001-065001. DOI: 10.1088/2058-6272/ab770e

A relativistic canonical symplectic particle-in-cell method for energetic plasma analysis

Funds: This research is supported by National Natural Science Foundation of China (Nos. 11805203, 11775222, 11575185), the National Magnetic Confinement Fusion Energy Research Project of China (2015GB111003), and the Key Research Program of Frontier Sciences CAS (QYZDB-SSW-SYS004).
More Information
  • Received Date: December 23, 2019
  • Revised Date: February 15, 2020
  • Accepted Date: February 16, 2020
  • A relativistic canonical symplectic particle-in-cell (RCSPIC) method for simulating energetic plasma processes is established. By use of the Hamiltonian for the relativistic Vlasov–Maxwell system, we obtain a discrete relativistic canonical Hamiltonian dynamical system, based on which the RCSPIC method is constructed by applying the symplectic temporal discrete method. Through a 106-step numerical test, the RCSPIC method is proven to possess long-term energy stability. The ability to calculate energetic plasma processes is shown by simulations of the reflection processes of a high-energy laser (1×1020Wcm−2) on the plasma edge.
  • [1]
    Qin H et al 2015 Nucl. Fusion 56 014001
    [2]
    Jia Q et al 2017 Phys. Plasmas 24 093103
    [3]
    Wilson F et al 2016 Phys. Plasmas 23 032302
    [4]
    Birdsall C et al 1985 Plasma Physics via Computer Simulation (New York: McGraw-Hill)
    [5]
    Hairer E et al 2002 Geometric Numerical Integration:Structure-preserving algorithms for Ordinary Differential equations (New York: Springer) (https://doi.org/10.1007/978-3-662-05018-7)
    [6]
    Xiao J Y et al 2013 Phys. Plasmas 20 102517
    [7]
    Xiao J Y et al 2015 Phys. Plasmas 22 092305
    [8]
    Xiao J Y et al 2017 Phys. Plasmas 24 062112
    [9]
    He Y et al 2015 Phys. Plasmas 22 124503
    [10]
    Kraus M et al 2015 Physica D 310 37
    [11]
    Kraus M et al 2013 (arXiv:1307.5665)
    [12]
    McLachlan R et al 2006 J. Phys. A: Math. Gen. 39 5251
    [13]
    Candy J et al 1991 J. Comput. Phys. 92 230
    [14]
    Qin H et al 2008 Phys. Rev. Lett. 100 035006
    [15]
    Qin H et al 2013 Phys. Plasmas 20 084503
    [16]
    Guan X Y et al 2010 Phys. Plasmas 17 092502
    [17]
    Zhang R L et al 2015 Phys. Plasmas 22 044501
    [18]
    Zhang R L et al 2014 Phys. Plasmas 21 032504
    [19]
    He Y et al 2016 J. Comput. Phys. 305 172
    [20]
    He Y et al 2015 J. Comput. Phys. 281 135
    [21]
    Channell P J et al 1990 Nonlinearity 3 231
    [22]
    Channell P J et al 2014 Comput. Sci. Discovery 7 015001
    [23]
    He Y et al 2016 Phys. Lett. A 381 568
    [24]
    Squire J et al 2012 Phys. Plasmas 19 084501
    [25]
    Ellison C L et al 2015 Plasma Phys. Controlled Fusion 57 054007
    [26]
    Li J X et al 2011 Phys. Plasmas 18 052902
    [27]
    McLachlan R I et al 1992 Nonlinearity 5 541
    [28]
    Shadwick B A et al 2014 Phys. Plasmas 21 055708
    [29]
    Zhang R L et al 2016 Phys. Rev. E 94 013205
    [30]
    Zhu B B et al 2016 J. Comput. Phys. 322 387
    [31]
    Zhang R L et al 2018 Phys. Plasmas 25 022117
    [32]
    Morrison P J et al 1982 AIP Conf. Proc. 88 13
    [33]
    Morrison P J et al 1980 Phys. Lett. A 80 383
    [34]
    Marsden J E et al 1982 Physica D 4 394
    [35]
    Kruer W 1988 The Physics of Laser Plasma Interactions(Reading, MA: Addison-Wesley)
    [36]
    Wang Y L et al 2016 Phys. Plasmas 23 062505
    [37]
    Van A J A et al 1959 Nature 183 430
    [38]
    Xiao J Y et al 2018 Plasma Sci. Technol. 20 110501
    [39]
    Koen E J et al 2012 Phys. Plasmas 19 042101
  • Related Articles

    [1]Yu ZHANG (张宇), Jianjun WU (吴建军), Yang OU (欧阳), Daixian ZHANG (张代贤), Jian LI (李健). Investigation on plasma characteristics in a laser ablation pulsed plasma thruster by optical emission spectroscopy[J]. Plasma Science and Technology, 2020, 22(4): 45501-045501. DOI: 10.1088/2058-6272/ab5a8e
    [2]Qi LIU (刘祺), Lei YANG (杨磊), Yuping HUANG (黄玉平), Xu ZHAO (赵絮), Zaiping ZHENG (郑再平). PIC simulation of plasma properties in the discharge channel of a pulsed plasma thruster with flared electrodes[J]. Plasma Science and Technology, 2019, 21(7): 74005-074005. DOI: 10.1088/2058-6272/aaff2e
    [3]Zilu ZHAO (赵紫璐), Dezheng YANG (杨德正), Wenchun WANG (王文春), Hao YUAN (袁皓), Li ZHANG (张丽), Sen WANG (王森). Volume added surface barrier discharge plasma excited by bipolar nanosecond pulse power in atmospheric air: optical emission spectra influenced by gap distance[J]. Plasma Science and Technology, 2018, 20(11): 115403. DOI: 10.1088/2058-6272/aac881
    [4]S N BATHGATE, M M M BILEK, D R MCKENZIE. Electrodeless plasma thrusters for spacecraft: a review[J]. Plasma Science and Technology, 2017, 19(8): 83001-083001. DOI: 10.1088/2058-6272/aa71fe
    [5]Xiangyang LIU (刘向阳), Siyu WANG (王司宇), Yang ZHOU (周阳), Zhiwen WU (武志文), Kan XIE (谢侃), Ningfei WANG (王宁飞). Thermal radiation properties of PTFE plasma[J]. Plasma Science and Technology, 2017, 19(6): 64012-064012. DOI: 10.1088/2058-6272/aa65e8
    [6]Zilu ZHAO (赵紫璐), Dezheng YANG (杨德正), Wenchun WANG (王文春), Hao YUAN (袁皓), Li ZHANG (张丽), Sen WANG (王森). Electrical characters and optical emission spectra of VBD coupled SBD excited by sine AC voltage in atmospheric air[J]. Plasma Science and Technology, 2017, 19(6): 64007-064007. DOI: 10.1088/2058-6272/aa6679
    [7]LIANG Tian (梁田), ZHENG Zhiyuan (郑志远), ZHANG Siqi (张思齐), TANG Weichong (汤伟冲), XIAO Ke (肖珂), LIANG Wenfei (梁文飞), GAO Lu (高禄), GAO Hua (高华). Influence of Surface Radius Curvature on Laser Plasma Propulsion with Ablation Water Propellant[J]. Plasma Science and Technology, 2016, 18(10): 1034-1037. DOI: 10.1088/1009-0630/18/10/11
    [8]ZHENG Zhiyuan(郑志远), GAO Hua(高华), GAO Lu(高禄), XING Jie(邢杰). Experimental Investigation of the Properties of an Acoustic Wave Induced by Laser Ablation of a Solid Target in Water-Confined Plasma Propulsion[J]. Plasma Science and Technology, 2014, 16(11): 1032-1035. DOI: 10.1088/1009-0630/16/11/06
    [9]LIU Wenzheng(刘文正), WANG Hao(王浩), ZHANG Dejin(张德金), ZHANG Jian(张坚). Study on the Discharge Characteristics of a Coaxial Pulsed Plasma Thruster[J]. Plasma Science and Technology, 2014, 16(4): 344-351. DOI: 10.1088/1009-0630/16/4/08
    [10]ZHENG Zhiyuan(郑志远), GAO Hua(高华), FAN Zhenjun(樊振军), XING Jie(邢杰). Characteristics of Droplets Ejected from Liquid Propellants Ablated by Laser Pulses in Laser Plasma Propulsion[J]. Plasma Science and Technology, 2014, 16(3): 251-254. DOI: 10.1088/1009-0630/16/3/14
  • Cited by

    Periodical cited type(3)

    1. Zhang, H., Wang, G., Yu, R. et al. Research on the Influence of Harmonics on Interruption Performance of High-Voltage Circuit Breaker. Lecture Notes in Electrical Engineering, 2024. DOI:10.1007/978-981-97-0877-2_25
    2. Li, L., Chen, J., Yi, C. et al. Mechanisms for insulation recovery during repetitive breakdowns in gas gaps. Physics of Plasmas, 2023, 30(12): 120501. DOI:10.1063/5.0166960
    3. PENG, S., LI, J., CAO, Y. et al. Research on arc root stagnation when small current is interrupted in self-excited circuit breaker. Plasma Science and Technology, 2022, 24(11): 114002. DOI:10.1088/2058-6272/ac71a3

    Other cited types(0)

Catalog

    Article views (121) PDF downloads (85) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return