Citation: | Yulei WANG (王雨雷), Feng YUAN (袁丰), Jian LIU (刘健). A relativistic canonical symplectic particle-in-cell method for energetic plasma analysis[J]. Plasma Science and Technology, 2020, 22(6): 65001-065001. DOI: 10.1088/2058-6272/ab770e |
[1] |
Qin H et al 2015 Nucl. Fusion 56 014001
|
[2] |
Jia Q et al 2017 Phys. Plasmas 24 093103
|
[3] |
Wilson F et al 2016 Phys. Plasmas 23 032302
|
[4] |
Birdsall C et al 1985 Plasma Physics via Computer Simulation (New York: McGraw-Hill)
|
[5] |
Hairer E et al 2002 Geometric Numerical Integration:Structure-preserving algorithms for Ordinary Differential equations (New York: Springer) (https://doi.org/10.1007/978-3-662-05018-7)
|
[6] |
Xiao J Y et al 2013 Phys. Plasmas 20 102517
|
[7] |
Xiao J Y et al 2015 Phys. Plasmas 22 092305
|
[8] |
Xiao J Y et al 2017 Phys. Plasmas 24 062112
|
[9] |
He Y et al 2015 Phys. Plasmas 22 124503
|
[10] |
Kraus M et al 2015 Physica D 310 37
|
[11] |
Kraus M et al 2013 (arXiv:1307.5665)
|
[12] |
McLachlan R et al 2006 J. Phys. A: Math. Gen. 39 5251
|
[13] |
Candy J et al 1991 J. Comput. Phys. 92 230
|
[14] |
Qin H et al 2008 Phys. Rev. Lett. 100 035006
|
[15] |
Qin H et al 2013 Phys. Plasmas 20 084503
|
[16] |
Guan X Y et al 2010 Phys. Plasmas 17 092502
|
[17] |
Zhang R L et al 2015 Phys. Plasmas 22 044501
|
[18] |
Zhang R L et al 2014 Phys. Plasmas 21 032504
|
[19] |
He Y et al 2016 J. Comput. Phys. 305 172
|
[20] |
He Y et al 2015 J. Comput. Phys. 281 135
|
[21] |
Channell P J et al 1990 Nonlinearity 3 231
|
[22] |
Channell P J et al 2014 Comput. Sci. Discovery 7 015001
|
[23] |
He Y et al 2016 Phys. Lett. A 381 568
|
[24] |
Squire J et al 2012 Phys. Plasmas 19 084501
|
[25] |
Ellison C L et al 2015 Plasma Phys. Controlled Fusion 57 054007
|
[26] |
Li J X et al 2011 Phys. Plasmas 18 052902
|
[27] |
McLachlan R I et al 1992 Nonlinearity 5 541
|
[28] |
Shadwick B A et al 2014 Phys. Plasmas 21 055708
|
[29] |
Zhang R L et al 2016 Phys. Rev. E 94 013205
|
[30] |
Zhu B B et al 2016 J. Comput. Phys. 322 387
|
[31] |
Zhang R L et al 2018 Phys. Plasmas 25 022117
|
[32] |
Morrison P J et al 1982 AIP Conf. Proc. 88 13
|
[33] |
Morrison P J et al 1980 Phys. Lett. A 80 383
|
[34] |
Marsden J E et al 1982 Physica D 4 394
|
[35] |
Kruer W 1988 The Physics of Laser Plasma Interactions(Reading, MA: Addison-Wesley)
|
[36] |
Wang Y L et al 2016 Phys. Plasmas 23 062505
|
[37] |
Van A J A et al 1959 Nature 183 430
|
[38] |
Xiao J Y et al 2018 Plasma Sci. Technol. 20 110501
|
[39] |
Koen E J et al 2012 Phys. Plasmas 19 042101
|
[1] | Jingyu REN (任景俞), Nan JIANG (姜楠), Kefeng SHANG (商克峰), Na LU (鲁娜), Jie LI (李杰), Yan WU (吴彦). Evaluation of trans-ferulic acid degradation by dielectric barrier discharge plasma combined with ozone in wastewater with different water quality conditions[J]. Plasma Science and Technology, 2019, 21(2): 25501-025501. DOI: 10.1088/2058-6272/aaef65 |
[2] | Linsheng WEI(魏林生), Xin LIANG (梁馨), Yafang ZHANG (章亚芳). Numerical investigation on the effect of gas parameters on ozone generation in pulsed dielectric barrier discharge[J]. Plasma Science and Technology, 2018, 20(12): 125505. DOI: 10.1088/2058-6272/aadca6 |
[3] | Yuchuan QIN (秦豫川), Shulou QIAN (钱树楼), Cheng WANG (王城), Weidong XIA (夏维东). Effects of nitrogen on ozone synthesis in packed-bed dielectric barrier discharge[J]. Plasma Science and Technology, 2018, 20(9): 95501-095501. DOI: 10.1088/2058-6272/aac203 |
[4] | Ernest GNAPOWSKI, Sebastian GNAPOWSKI, Jaros|aw PYTKA. The impact of dielectrics on the electrical capacity, concentration, efficiency ozone generation for the plasma reactor with mesh electrodes[J]. Plasma Science and Technology, 2018, 20(8): 85505-085505. DOI: 10.1088/2058-6272/aac1b6 |
[5] | Ying CAO (曹颖), Jie LI (李杰), Nan JIANG (姜楠), Yan WU (吴彦), Kefeng SHANG (商克峰), Na LU (鲁娜). The structure optimization of gas-phase surface discharge and its application for dye degradation[J]. Plasma Science and Technology, 2018, 20(5): 54018-054018. DOI: 10.1088/2058-6272/aaa3d5 |
[6] | Zelong ZHANG (张泽龙), Jie SHEN (沈洁), Cheng CHENG (程诚), Zimu XU (许子牧), Weidong XIA (夏维东). Generation of reactive species in atmospheric pressure dielectric barrier discharge with liquid water[J]. Plasma Science and Technology, 2018, 20(4): 44009-044009. DOI: 10.1088/2058-6272/aaa437 |
[7] | ZHANG Yu (张宇), LIU Lijuan (刘莉娟), LI Ben (李犇), OUYANG Jiting (欧阳吉庭). Wire-to-Plate Surface Dielectric Barrier Discharge and Induced Ionic Wind[J]. Plasma Science and Technology, 2016, 18(6): 634-640. DOI: 10.1088/1009-0630/18/6/09 |
[8] | WEI Linsheng (魏林生), PENG Bangfa (彭邦发), LI Ming (李鸣), ZHANG Yafang (章亚芳), HU Zhaoji (胡兆吉). Dynamic Characteristics of Positive Pulsed Dielectric Barrier Discharge for Ozone Generation in Air[J]. Plasma Science and Technology, 2016, 18(2): 147-156. DOI: 10.1088/1009-0630/18/2/09 |
[9] | QU Guangzhou(屈广周), LIANG Dongli(梁东丽), QU Dong(曲东), HUANG Yimei(黄懿梅), LI Jie(李杰). Comparison Between Dielectric Barrier Discharge Plasma and Ozone Regenerations of Activated Carbon Exhausted with Pentachlorophenol[J]. Plasma Science and Technology, 2014, 16(6): 608-613. DOI: 10.1088/1009-0630/16/6/13 |
[10] | LIU Wenzheng(刘文正), LI Chuanhui(李传辉). Study on the Generation Characteristics of Dielectric Barrier Discharge Plasmas on Water Surface[J]. Plasma Science and Technology, 2014, 16(1): 26-31. DOI: 10.1088/1009-0630/16/1/06 |
1. | Mikeš, J., Pekárek, S., Hanuš, O. Combined effects of electrode geometry and airflow streamlines patterns on ozone production of a cylindrical dielectric barrier discharge. Electrochemistry Communications, 2025. DOI:10.1016/j.elecom.2025.107873 |
2. | Zhang, J., Zhu, M., Zhang, C. Dynamic of mode transition in air surface micro-discharge plasma: reactive species in confined space. Plasma Science and Technology, 2025, 27(1): 015402. DOI:10.1088/2058-6272/ad862c |
3. | Ali, N.N., Alayan, H.M., AbdulRazak, A.A. et al. Modeling and optimizing phenol degradation in aqueous solution using post discharge DBD plasma treatment. Desalination and Water Treatment, 2025. DOI:10.1016/j.dwt.2025.100993 |
4. | Haosheng, J., Shiyun, L., Hengrui, L. et al. Discharge Characteristics of DBD with Contact Electrodes at Atmospheric Pressure in Quiescent Air. Lecture Notes in Electrical Engineering, 2024. DOI:10.1007/978-981-99-7405-4_28 |
5. | Giotis, K., Svarnas, P., Amanatides, E. et al. Ionization wave propagation and cathode sheath formation due to surface dielectric-barrier discharge sustained in pulsed mode. Plasma Science and Technology, 2023, 25(11): 115402. DOI:10.1088/2058-6272/acdb52 |
6. | Tański, M., Reza, A., Przytuła, D. et al. Ozone Generation by Surface Dielectric Barrier Discharge. Applied Sciences (Switzerland), 2023, 13(12): 7001. DOI:10.3390/app13127001 |
7. | Mikeš, J., Soukup, I., Pekárek, S. A 3D Numerical Study of the Surface Dielectric Barrier Discharge Initial Phase. Mathematics, 2023, 11(4): 1025. DOI:10.3390/math11041025 |
8. | Mikeš, J., Pekárek, S., Hanuš, O. Surface Dielectric Barrier Discharge in a Cylindrical Configuration–Effect of Airflow Orientation to the Microdischarges. Ozone: Science and Engineering, 2023, 45(1): 2-18. DOI:10.1080/01919512.2021.2016369 |
9. | Zhao, Q., Mao, B., Bai, X. et al. Experimental investigation of the discharge and thermal characteristics of an alternating current dielectric-barrier discharge plasma reactor. Applied Thermal Engineering, 2022. DOI:10.1016/j.applthermaleng.2022.119276 |
10. | Xu, H., Zhu, F., Liu, Y. et al. Effects of the ground-electrode temperature on the plasma physicochemical processes and biological inactivation functions involved in surface dielectric barrier discharge. Plasma Sources Science and Technology, 2022, 31(11): 115010. DOI:10.1088/1361-6595/ac9d63 |
11. | Huang, L., Guo, L., Qi, Y. et al. Bactericidal effect of surface plasma under different discharge modes. Physics of Plasmas, 2021, 28(12): 123501. DOI:10.1063/5.0068094 |
12. | ZENG, X., ZHANG, Y., GUO, L. et al. Ozone generation enhanced by silica catalyst in packed-bed DBD reactor. Plasma Science and Technology, 2021, 23(8): 085501. DOI:10.1088/2058-6272/ac0244 |
13. | Pekárek, S., Mikeš, J., Červenka, M. et al. Air Supply Mode Effects on Ozone Production of Surface Dielectric Barrier Discharge in a Cylindrical Configuration. Plasma Chemistry and Plasma Processing, 2021, 41(3): 779-792. DOI:10.1007/s11090-021-10154-x |
14. | Xi, W., Wang, W., Liu, Z. et al. Mode transition of air surface micro-discharge and its effect on the water activation and antibacterial activity. Plasma Sources Science and Technology, 2020, 29(9): 095013. DOI:10.1088/1361-6595/aba7ef |
15. | Homola, T., Prukner, V., Hoffer, P. et al. Multi-hollow surface dielectric barrier discharge: An ozone generator with flexible performance and supreme efficiency. Plasma Sources Science and Technology, 2020, 29(9): 095014. DOI:10.1088/1361-6595/aba987 |
16. | Yuan, D., Zhang, G., Ling, Z. et al. Characteristics of temperature distribution in atmospheric pulsed surface dielectric barrier discharge for ozone production. Vacuum, 2020. DOI:10.1016/j.vacuum.2020.109351 |
17. | Mikheyev, P.A., Demyanov, A.V., Kochetov, I.V. et al. Ozone and oxygen atoms production in a dielectric barrier discharge in pure oxygen and O2/CH4 mixtures. Modeling and experiment. Plasma Sources Science and Technology, 2020, 29(1): 015012. DOI:10.1088/1361-6595/ab5da3 |