Advanced Search+
Yulei WANG (王雨雷), Feng YUAN (袁丰), Jian LIU (刘健). A relativistic canonical symplectic particle-in-cell method for energetic plasma analysis[J]. Plasma Science and Technology, 2020, 22(6): 65001-065001. DOI: 10.1088/2058-6272/ab770e
Citation: Yulei WANG (王雨雷), Feng YUAN (袁丰), Jian LIU (刘健). A relativistic canonical symplectic particle-in-cell method for energetic plasma analysis[J]. Plasma Science and Technology, 2020, 22(6): 65001-065001. DOI: 10.1088/2058-6272/ab770e

A relativistic canonical symplectic particle-in-cell method for energetic plasma analysis

Funds: This research is supported by National Natural Science Foundation of China (Nos. 11805203, 11775222, 11575185), the National Magnetic Confinement Fusion Energy Research Project of China (2015GB111003), and the Key Research Program of Frontier Sciences CAS (QYZDB-SSW-SYS004).
More Information
  • Received Date: December 23, 2019
  • Revised Date: February 15, 2020
  • Accepted Date: February 16, 2020
  • A relativistic canonical symplectic particle-in-cell (RCSPIC) method for simulating energetic plasma processes is established. By use of the Hamiltonian for the relativistic Vlasov–Maxwell system, we obtain a discrete relativistic canonical Hamiltonian dynamical system, based on which the RCSPIC method is constructed by applying the symplectic temporal discrete method. Through a 106-step numerical test, the RCSPIC method is proven to possess long-term energy stability. The ability to calculate energetic plasma processes is shown by simulations of the reflection processes of a high-energy laser (1×1020Wcm−2) on the plasma edge.
  • [1]
    Qin H et al 2015 Nucl. Fusion 56 014001
    [2]
    Jia Q et al 2017 Phys. Plasmas 24 093103
    [3]
    Wilson F et al 2016 Phys. Plasmas 23 032302
    [4]
    Birdsall C et al 1985 Plasma Physics via Computer Simulation (New York: McGraw-Hill)
    [5]
    Hairer E et al 2002 Geometric Numerical Integration:Structure-preserving algorithms for Ordinary Differential equations (New York: Springer) (https://doi.org/10.1007/978-3-662-05018-7)
    [6]
    Xiao J Y et al 2013 Phys. Plasmas 20 102517
    [7]
    Xiao J Y et al 2015 Phys. Plasmas 22 092305
    [8]
    Xiao J Y et al 2017 Phys. Plasmas 24 062112
    [9]
    He Y et al 2015 Phys. Plasmas 22 124503
    [10]
    Kraus M et al 2015 Physica D 310 37
    [11]
    Kraus M et al 2013 (arXiv:1307.5665)
    [12]
    McLachlan R et al 2006 J. Phys. A: Math. Gen. 39 5251
    [13]
    Candy J et al 1991 J. Comput. Phys. 92 230
    [14]
    Qin H et al 2008 Phys. Rev. Lett. 100 035006
    [15]
    Qin H et al 2013 Phys. Plasmas 20 084503
    [16]
    Guan X Y et al 2010 Phys. Plasmas 17 092502
    [17]
    Zhang R L et al 2015 Phys. Plasmas 22 044501
    [18]
    Zhang R L et al 2014 Phys. Plasmas 21 032504
    [19]
    He Y et al 2016 J. Comput. Phys. 305 172
    [20]
    He Y et al 2015 J. Comput. Phys. 281 135
    [21]
    Channell P J et al 1990 Nonlinearity 3 231
    [22]
    Channell P J et al 2014 Comput. Sci. Discovery 7 015001
    [23]
    He Y et al 2016 Phys. Lett. A 381 568
    [24]
    Squire J et al 2012 Phys. Plasmas 19 084501
    [25]
    Ellison C L et al 2015 Plasma Phys. Controlled Fusion 57 054007
    [26]
    Li J X et al 2011 Phys. Plasmas 18 052902
    [27]
    McLachlan R I et al 1992 Nonlinearity 5 541
    [28]
    Shadwick B A et al 2014 Phys. Plasmas 21 055708
    [29]
    Zhang R L et al 2016 Phys. Rev. E 94 013205
    [30]
    Zhu B B et al 2016 J. Comput. Phys. 322 387
    [31]
    Zhang R L et al 2018 Phys. Plasmas 25 022117
    [32]
    Morrison P J et al 1982 AIP Conf. Proc. 88 13
    [33]
    Morrison P J et al 1980 Phys. Lett. A 80 383
    [34]
    Marsden J E et al 1982 Physica D 4 394
    [35]
    Kruer W 1988 The Physics of Laser Plasma Interactions(Reading, MA: Addison-Wesley)
    [36]
    Wang Y L et al 2016 Phys. Plasmas 23 062505
    [37]
    Van A J A et al 1959 Nature 183 430
    [38]
    Xiao J Y et al 2018 Plasma Sci. Technol. 20 110501
    [39]
    Koen E J et al 2012 Phys. Plasmas 19 042101
  • Related Articles

    [1]Zilu ZHAO (赵紫璐), Dezheng YANG (杨德正), Wenchun WANG (王文春), Hao YUAN (袁皓), Li ZHANG (张丽), Sen WANG (王森). Volume added surface barrier discharge plasma excited by bipolar nanosecond pulse power in atmospheric air: optical emission spectra influenced by gap distance[J]. Plasma Science and Technology, 2018, 20(11): 115403. DOI: 10.1088/2058-6272/aac881
    [2]Xiang HE (何湘), Chong LIU (刘冲), Yachun ZHANG (张亚春), Jianping CHEN (陈建平), Yudong CHEN (陈玉东), Xiaojun ZENG (曾小军), Bingyan CHEN (陈秉岩), Jiaxin PANG (庞佳鑫), Yibing WANG (王一兵). Diagnostic of capacitively coupled radio frequency plasma from electrical discharge characteristics: comparison with optical emission spectroscopy and fluid model simulation[J]. Plasma Science and Technology, 2018, 20(2): 24005-024005. DOI: 10.1088/2058-6272/aa9a31
    [3]Yunfeng HAN (韩云峰), Shaoyang WEN (温少扬), Hongwei TANG (汤红卫), Xianhu WANG (王贤湖), Chongshan ZHONG (仲崇山). Influences of frequency on nitrogen fixation of dielectric barrier discharge in air[J]. Plasma Science and Technology, 2018, 20(1): 14001-014001. DOI: 10.1088/2058-6272/aa947a
    [4]Hao YUAN (袁皓), Wenchun WANG (王文春), Dezheng YANG (杨德正), Zilu ZHAO (赵紫璐), Li ZHANG (张丽), Sen WANG (王森). Atmospheric air dielectric barrier discharge excited by nanosecond pulse and AC used for improving the hydrophilicity of aramid fibers[J]. Plasma Science and Technology, 2017, 19(12): 125401. DOI: 10.1088/2058-6272/aa8766
    [5]Cheng PAN (潘成), Ju TANG (唐炬), Dibo WANG (王邸博), Yi LUO (罗毅), Ran ZHUO (卓然), Mingli FU (傅明利). Decay characters of charges on an insulator surface after different types of discharge[J]. Plasma Science and Technology, 2017, 19(7): 75503-075503. DOI: 10.1088/2058-6272/aa6436
    [6]TANG Jingfeng (唐井峰), WEI Liqiu (魏立秋), HUO Yuxin (霍玉鑫), SONG Jian (宋健), YU Daren (于达仁), ZHANG Chaohai (张潮海). Effect of Airflows on Repetitive Nanosecond Volume Discharges[J]. Plasma Science and Technology, 2016, 18(3): 273-277. DOI: 10.1088/1009-0630/18/3/10
    [7]YANG Fuxiang (杨富翔), MU Zongxin (牟宗信), ZHANG Jialiang (张家良). Discharge Modes Suggested by Emission Spectra of Nitrogen Dielectric Barrier Discharge with Wire-Cylinder Electrodes[J]. Plasma Science and Technology, 2016, 18(1): 79-85. DOI: 10.1088/1009-0630/18/1/14
    [8]Panagiotis SVARNAS. Vibrational Temperature of Excited Nitrogen Molecules Detected in a 13.56 MHz Electrical Discharge by Sheath-Side Optical Emission Spectroscopy[J]. Plasma Science and Technology, 2013, 15(9): 891-895. DOI: 10.1088/1009-0630/15/9/11
    [9]Imola MOLNAR, Judit PAPP, Alpar SIMON, Sorin Dan ANGHEL. Deactivation of Streptococcus mutans Biofilms on a Tooth Surface Using He Dielectric Barrier Discharge at Atmospheric Pressure[J]. Plasma Science and Technology, 2013, 15(6): 535-541. DOI: 10.1088/1009-0630/15/6/09
    [10]DIAO Ying, XU Jinzhou, HU Qianqian, ZHANG Jing, SHI Jianjun, GUO Ying. Electrical and Optical Characterization of Dielectric Barrier Discharge and Its Application to Plasma Treatment of Poly (ethylene terephtalate) (PET) Fibers[J]. Plasma Science and Technology, 2011, 13(6): 641-644.
  • Cited by

    Periodical cited type(23)

    1. Gao, X., Deng, Y., Wei, Z. et al. Catalytic oxidation of volatile organic compounds by plasma–metal oxide coupling. Journal of Environmental Chemical Engineering, 2025, 13(2): 116045. DOI:10.1016/j.jece.2025.116045
    2. Qu, M., Zheng, Y., Cheng, Z. et al. Mechanism of chlorobenzene removal in biotrickling filter enhanced by non-thermal plasma: Insights from biodiversity and functional gene perspectives. Bioresource Technology, 2025. DOI:10.1016/j.biortech.2024.131931
    3. Zang, X., Sun, H., Wang, W. et al. Plasma-catalytic removal of toluene over bimetallic M/Mn-BTC catalysts in dielectric barrier discharge reactor. Separation and Purification Technology, 2024. DOI:10.1016/j.seppur.2023.125667
    4. Zhang, W., Xing, Y., Hao, L. et al. Effect of gas components on the degradation mechanism of o-dichlorobenzene by non-thermal plasma technology with single dielectric barrier discharge. Chemosphere, 2023. DOI:10.1016/j.chemosphere.2023.139866
    5. Zhang, L., Zou, Z., Lei, Z. et al. Research on the Mechanism of Synergistic Treatment of VOCs–O3 by Low Temperature Plasma Catalysis Technology. Plasma Chemistry and Plasma Processing, 2023, 43(6): 1651-1672. DOI:10.1007/s11090-023-10366-3
    6. Tao, Y., Xu, Y., Chang, K. et al. Dielectric barrier discharge plasma synthesis of Ag/γ-Al2O3 catalysts for catalytic oxidation of CO. Plasma Science and Technology, 2023, 25(8): 085504. DOI:10.1088/2058-6272/acc14c
    7. Shi, X., Liang, W., Yin, G. et al. Degradation of chlorobenzene by non-thermal plasma coupled with catalyst: influence of catalyst, interaction between plasma and catalyst. Plasma Science and Technology, 2023, 25(5): 055506. DOI:10.1088/2058-6272/acae56
    8. Huang, H., He, L., Wang, Y. et al. Experimental study on toluene removal by a two-stage plasma-biofilter system. Plasma Science and Technology, 2022, 24(12): 124011. DOI:10.1088/2058-6272/aca582
    9. Shi, X., Liang, W., Yin, G. et al. Effect of the factors on the mixture of toluene and chlorobenzene degradation by non-thermal plasma. Journal of Environmental Chemical Engineering, 2022, 10(6): 108927. DOI:10.1016/j.jece.2022.108927
    10. Shi, X., Liang, W., Yin, G. et al. Degradation of chlorobenzene by non-thermal plasma with Mn based catalyst | [低温等离子体协同 Mn 基催化剂降解氯苯研究]. Huagong Xuebao/CIESC Journal, 2022, 73(10): 4472-4483. DOI:10.11949/0438-1157.20220696
    11. Zhu, X., Xiong, H., Liu, J. et al. Plasma-enhanced catalytic oxidation of ethylene oxide over Fe–Mn based ternary catalysts. Journal of the Energy Institute, 2022. DOI:10.1016/j.joei.2022.06.002
    12. Zhu, X., Wu, X., Liu, J. et al. Soot Oxidation over γ-Al2O3-Supported Manganese-Based Binary Catalyst in a Dielectric Barrier Discharge Reactor. Catalysts, 2022, 12(7): 716. DOI:10.3390/catal12070716
    13. Yu, X., Dang, X., Li, S. et al. Abatement of chlorobenzene by plasma catalysis: Parameters optimization through response surface methodology (RSM), degradation mechanism and PCDD/Fs formation. Chemosphere, 2022. DOI:10.1016/j.chemosphere.2022.134274
    14. Gu, J., Shen, X., Liang, X. et al. Research on the removal of H2S using dielectric barrier discharge combined with photocatalysis and the fate of sulfur in the reaction. Chemical Engineering and Processing - Process Intensification, 2022. DOI:10.1016/j.cep.2022.108984
    15. Li, Y., Lv, J., Xu, Q. et al. Study of the Treatment of Organic Waste Gas Containing Benzene by a Low Temperature Plasma-Biological Degradation Method. Atmosphere, 2022, 13(4): 622. DOI:10.3390/atmos13040622
    16. Chang, T., Ma, C., Nikiforov, A. et al. Plasma degradation of trichloroethylene: Process optimization and reaction mechanism analysis. Journal of Physics D: Applied Physics, 2022, 55(12): 125202. DOI:10.1088/1361-6463/ac40bb
    17. Lin, Q., Peng, H., Xie, W. et al. Evaluation catalytic performance of Ag/TiO2 in dielectric barrier discharge plasma. Vacuum, 2022. DOI:10.1016/j.vacuum.2021.110844
    18. Xie, L., Lu, J., Ye, G. et al. Decomposition of gaseous chlorobenzene using a DBD combined CuO/α-Fe2O3 catalysis system. Environmental Technology (United Kingdom), 2022, 43(18): 2743-2754. DOI:10.1080/09593330.2021.1899292
    19. Li, S., Yu, X., Dang, X. et al. Non-thermal plasma coupled with MOx/γ-Al2O3 (M: Fe, Co, Mn, Ce) for chlorobenzene degradation: Analysis of byproducts and the reaction mechanism. Journal of Environmental Chemical Engineering, 2021, 9(6): 106562. DOI:10.1016/j.jece.2021.106562
    20. Jin, X., Wang, G., Lian, L. et al. Chlorobenzene removal using dbd coupled with cuo/γ-al2 o3 catalyst. Applied Sciences (Switzerland), 2021, 11(14): 6433. DOI:10.3390/app11146433
    21. Zhou, W., Ye, Z., Nikiforov, A. et al. The influence of relative humidity on double dielectric barrier discharge plasma for chlorobenzene removal. Journal of Cleaner Production, 2021. DOI:10.1016/j.jclepro.2020.125502
    22. Zhao, Y., Ye, K., Zhuang, Y. et al. Progress of manganese catalysts for non-thermal plasma catalysis on VOCs degradation. Huagong Jinzhan/Chemical Industry and Engineering Progress, 2020, 39(S2): 175-184. DOI:10.16085/j.issn.1000-6613.2020-1111
    23. Wang, R., Ren, J., Wu, J. et al. Characteristics and mechanism of toluene removal by double dielectric barrier discharge combined with an Fe2O3/TiO2/γ-Al2O3catalyst. RSC Advances, 2020, 10(68): 41511-41522. DOI:10.1039/d0ra07938c

    Other cited types(0)

Catalog

    Article views (121) PDF downloads (85) Cited by(23)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return