Advanced Search+
C LECHTE, G D CONWAY, TGÖRLER, T HAPPEL, the ASDEXUpgrade Team. Fullwave Doppler reflectometry simulations for density turbulence spectra in ASDEX Upgrade using GENE and IPF-FD3D[J]. Plasma Science and Technology, 2020, 22(6): 64006-064006. DOI: 10.1088/2058-6272/ab7ce8
Citation: C LECHTE, G D CONWAY, TGÖRLER, T HAPPEL, the ASDEXUpgrade Team. Fullwave Doppler reflectometry simulations for density turbulence spectra in ASDEX Upgrade using GENE and IPF-FD3D[J]. Plasma Science and Technology, 2020, 22(6): 64006-064006. DOI: 10.1088/2058-6272/ab7ce8

Fullwave Doppler reflectometry simulations for density turbulence spectra in ASDEX Upgrade using GENE and IPF-FD3D

Funds: This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training program 2014–2018 and 2019–2020 under grant agreement No. 633053.
More Information
  • Received Date: October 30, 2019
  • Revised Date: March 03, 2020
  • Accepted Date: March 04, 2020
  • Doppler reflectometry is an important microwave diagnostic for turbulent fusion plasmas. A microwave beam is scattered off density fluctuations, with wavenumbers according to incident frequency and relative direction. This way, a density fluctuation spectrum is measured. However, the correspondence between fluctuation power and scattered microwave power is strongly nonlinear. Studying these processes numerically therefore requires fullwave simulations (IPF-FD3D), with density fluctuations supplied by a separate plasma turbulence code (GENE). Earlier such attempts suffered from the low number of data points in the ‘interesting’ part of the spectrum, where a power law had to be fitted to 4 or 5 points. This has been overcome with recent simulations, which now show a much better agreement with experimental data.
  • [1]
    Conway G D et al 2010 Plasma Fusion Res. 5 S2005
    [2]
    Lechte C et al 2017 Plasma Phys. Control. Fusion 59 075006
    [3]
    Stroth U et al 2015 Nucl. Fusion 55 083027
    [4]
    Happel T et al 2017 Plasma Phys. Control. Fusion 59 054009
    [5]
    Krutkin O L et al 2019 Nucl. Fusion 59 096017
    [6]
    Kolmogorov A N 1941 Dokl. Akad. Nauk SSSR 30 301
    [7]
    Kraichnan R H 1967 Phys. Fluids 10 1417
    [8]
    Jenko F et al 2000 Phys. Plasmas 7 1904
    [9]
    Görler T et al 2011 J. Comput. Phys. 230 7053
    [10]
    Lechte C 2009 IEEE Trans. Plasma Sci. 37 1099
    [11]
    Lechte C, Holzhauer E, Stroth U and Conway G 2007 Full wave doppler reflectometry simulations in 2D Proc. 8th Int. Reflectometer Workshop (St. Petersburg, Russia) (https:// aug.ipp.mpg.de/IRW/IRW8/papers/0810-IRW08- LechteC_paper.pdf)
    [12]
    Taflove A and Hagness S C 2000 Computational Electrodynamics (Boston, MA: Artech House Publishers)
    [13]
    Young J L 1994 Radio Sci. 29 1513
    [14]
    Xu L and Yuan N 2006 IEEE Antennas Wirel. Propag. Lett. 5 335
    [15]
    Yee K 1966 IEEE Trans. Antennas Propag. 14 302
    [16]
    McCarthy P J, Martin P and Schneider W 1999 The CLISTE interpretive equilibrium code IPP Report 5/85 ax-Planck- Institute for Plasma Physics
    [17]
    Poli E, Peeters A G and Pereverzev G V 2001 Comput. Phys. Commun. 136 90
    [18]
    Lechte C 2018 Doppler reflectometry graphical demonstration movie with IPF-FD3D (https://doi.org/10.5281/ zenodo.3696852)
    [19]
    Pinzón J R et al 2016 Plasma Phys. Control. Fusion 59 035005
    [20]
    Conway G D et al 2019 Recent progress in modelling the resolution and localization of Doppler reflectometry measurements Proc. 14th Int. Reflectometry Workshop for Fusion Plasma Diagnostics (https://aug.ipp.mpg.de/IRW/ IRW14/papers/213-IRW14-Conway-paper.pdf)
    [21]
    Gusakov E Z and Popov A Y 2004 Plasma Phys. Control. Fusion 46 1393
    [22]
    Gusakov E, Surkov A and Popov A 2005 Plasma Phys. Control. Fusion 47 959
  • Related Articles

    [1]Zhongzheng LI (李中正), Juanfang HAN (韩娟芳), FangpingWANG (王芳平), Zhengwu CHEN (陈正武), Wenshan DUAN (段文山). Investigation of the fast magnetosonic wave excited by the Alfvén wave phase mixing by using the Hall–MHD model in inhomogeneous plasma[J]. Plasma Science and Technology, 2021, 23(3): 35003-035003. DOI: 10.1088/2058-6272/abe10b
    [2]Liang HAN (韩亮), Jun GAO (高俊), Tao CHEN (陈涛), Yuntian CONG (丛云天), Zongliang LI (李宗良). A method to measure the in situ magnetic field in a Hall thruster based on the Faraday rotation effect[J]. Plasma Science and Technology, 2019, 21(8): 85502-085502. DOI: 10.1088/2058-6272/ab0f63
    [3]Hong LI (李鸿), Xingyu LIU (刘星宇), Zhiyong GAO (高志勇), Yongjie DING (丁永杰), Liqiu WEI (魏立秋), Daren YU (于达仁), Xiaogang WANG (王晓钢). Particle-in-cell simulation for effect of anode temperature on discharge characteristics of a Hall effect thruster[J]. Plasma Science and Technology, 2018, 20(12): 125504. DOI: 10.1088/2058-6272/aaddf2
    [4]Liqiu WEI (魏立秋), Wenbo LI (李文博), Yongjie DING (丁永杰), Daren YU (于达仁). Effect of low-frequency oscillation on performance of Hall thrusters[J]. Plasma Science and Technology, 2018, 20(7): 75502-075502. DOI: 10.1088/2058-6272/aabae0
    [5]Yongjie DING (丁永杰), Hong LI (李鸿), Boyang JIA (贾伯阳), PengLI (李朋), Liqiu WEI (魏立秋), YuXU (徐宇), Wuji PENG (彭武吉), Hezhi SUN (孙鹤芝), Yong CAO (曹勇), Daren YU (于达仁). Simulation of the effect of a magnetically insulated anode on a low-power cylindrical Hall thruster[J]. Plasma Science and Technology, 2018, 20(3): 35509-035509. DOI: 10.1088/2058-6272/aa9fe7
    [6]CHANG Lei (苌磊), LI Qingchong (李庆冲), ZHANG Huijie (张辉洁), LI Yinghong (李应红), WU Yun (吴云), ZHANG Bailing (张百灵), ZHUANG Zhong (庄重). Effect of Radial Density Configuration on Wave Field and Energy Flow in Axially Uniform Helicon Plasma[J]. Plasma Science and Technology, 2016, 18(8): 848-854. DOI: 10.1088/1009-0630/18/8/10
    [7]DUAN Ping (段萍), BIAN Xingyu (边兴宇), CAO Anning (曹安宁), LIU Guangrui (刘广睿), CHEN Long (陈龙), YIN Yan (殷燕). Effect of Segmented Electrode Length on the Performances of an Aton-Type Hall Thruster[J]. Plasma Science and Technology, 2016, 18(5): 525-530. DOI: 10.1088/1009-0630/18/5/14
    [8]DUAN Ping (段萍), LIU Guangrui (刘广睿), BIAN Xingyu (边兴宇), CHEN Long (陈龙), YIN Yan (殷燕), CAO Anning (曹安宁). Effect of the Discharge Voltage on the Performance of the Hall Thruster[J]. Plasma Science and Technology, 2016, 18(4): 382-387. DOI: 10.1088/1009-0630/18/4/09
    [9]K. Ogawa, M. Isobe, K. Toi, F. Watanabe, D. A. Spong, A. Shimizu, M. Osakabe, D. S. Darrow, S. Ohdachi, S. Sakakibara, LHD Experiment Group. Magnetic Configuration Effects on Fast Ion Losses Induced by Fast Ion Driven Toroidal Alfvén Eigenmodes in the Large Helical Device[J]. Plasma Science and Technology, 2012, 14(4): 269-272. DOI: 10.1088/1009-0630/14/4/01
    [10]LIU Xun (刘勋), LI Yutong (李玉同), ZHONG Jiayong (仲佳勇), DONG Quanli (董全力), WANG Shoujun (王首钧), ZHANG Lei (张蕾), ZHU Jianqiang (朱健强), ZHAO Gang (赵刚), ZHANG Jie (张杰). Characteristics of Plasma Jets in Laser-Driven Magnetic Reconnection[J]. Plasma Science and Technology, 2012, 14(2): 97-101. DOI: 10.1088/1009-0630/14/2/03

Catalog

    Article views (124) PDF downloads (49) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return