Advanced Search+
Xiaona LIU (刘晓娜), Xiaoqing CHE (车晓青), Kunyu LI (李坤玉), Xibo WANG (王喜波), Zhaozhou LIN (林兆洲), Zhisheng WU (吴志生), Qiusheng ZHENG (郑秋生). Geographical authenticity evaluation of Mentha haplocalyx by LIBS coupled with multivariate analyses[J]. Plasma Science and Technology, 2020, 22(7): 74006-074006. DOI: 10.1088/2058-6272/ab7eda
Citation: Xiaona LIU (刘晓娜), Xiaoqing CHE (车晓青), Kunyu LI (李坤玉), Xibo WANG (王喜波), Zhaozhou LIN (林兆洲), Zhisheng WU (吴志生), Qiusheng ZHENG (郑秋生). Geographical authenticity evaluation of Mentha haplocalyx by LIBS coupled with multivariate analyses[J]. Plasma Science and Technology, 2020, 22(7): 74006-074006. DOI: 10.1088/2058-6272/ab7eda

Geographical authenticity evaluation of Mentha haplocalyx by LIBS coupled with multivariate analyses

Funds: This work was supported by National Natural Science Foundation of China (Nos. 81903796, 81603396 and 31870338), the National Key Research and Development Program of China (No. 2019YFC1711200), Major new drug innovation project of the ministry of science and technology (2018ZX09201011), Scientific and Technological Planning Projects of Colleges and Universities of Shandong Province (No. J18KA287) and Binzhou Medical University Research Startup Fund Project (No. BY2016KYQD02).
More Information
  • Received Date: December 28, 2019
  • Revised Date: March 08, 2020
  • Accepted Date: March 10, 2020
  • Mentha haplocalyx (mint) is a significant traditional Chinese medicine (TCM) listed in the Catalogue of ‘Medicinal and Food Homology’, therefore, its geographical origins (GOs) are critical to the medicinal and food value. Laser-induced breakdown spectroscopy (LIBS) is an advanced analytical technique for GOs certification, due to the fast multi-elemental analysis requiring minimal sample pretreatment. In this study, LIBS data of sampled mint from five GOs were investigated by LIBS coupled with multivariate statistical analyzes. The spectral data was analyzed by two chemometric algorithms, i.e. principal component analysis (PCA) and least squares support vector machines (LS-SVM). Specifically, the performance of LS-SVM with least kernel and radial basis function (RBF) kernel was explored in sensitivity and robustness tests. Both LS-SVM algorithms exhibited excellent performance of classification in sensitive test and good performance (a little inferior) in robustness test. Generally, LS-SVM with linear kernel equally outperformed LS-SVM based on RBF kernel. The result indicated the potential for future applications in herbs and food, especially for in situ GOs applications of TCM authenticity rapidly.
  • [1]
    Pharmacopoeia Commission of PRC 2003 Pharmacopoeia of the People’s Republic of China (Beijing: Chemical Industry Press)
    [2]
    Zhao D et al 2013 Ind. Crop. Prod. 42 251
    [3]
    Wong R W K et al 2010 Int. J. Oral Maxillofac. Surg. 39 599
    [4]
    Dorman H J D et al 2003 J. Agric. Food Chem. 51 4563
    [5]
    Dong W J, Ni Y N and Kokot S 2015 J. Sep. Sci. 38 402
    [6]
    Cao G et al 2011 Analyst 136 4653
    [7]
    Dong W J, Ni Y N and Kokot S 2014 Appl. Spectrosc. 68 245
    [8]
    Wang J J, Yan S M and Yang B 2015 Spectrosc. Spect. Anal.35 1885 (in Chinese)
    [9]
    Kwon Y K et al 2014 Food Chem. 161 168
    [10]
    Wang J M et al 2018 Anal. Lett. 51 575
    [11]
    Wang Z et al 2014 Frontiers Phys. 9 419
    [12]
    Ma X F et al 2018 Sci. Rep. 8 10271
    [13]
    Konieczynski P, Arceusz A and Wesolowski M 2016 Biol.Trace Elem. Res. 170 466
    [14]
    Jiménez-Carvelo A M, Lozano V A and Olivieri A C 2019 Food Control 96 22
    [15]
    Marguí E and Voutchkov M 2018 Food Anal. Methods 11 282
    [16]
    Fu Y T et al 2019 Plasma Sci. Technol. 21 030101
    [17]
    Wang Z Z et al 2016 Frontiers Phys. 11 114213
    [18]
    Hahn D W and Omenetto N 2012 Appl. Spectrosc. 66 347
    [19]
    Luo R J et al 2019 Food Chem. 274 1
    [20]
    Zhang S S et al 2017 Int. J. Food Sci. Technol. 52 457
    [21]
    Liu Z et al 2019 Rapid Commun. Mass Spectrom. 33 778
    [22]
    Zhao Y S et al 2017 Sci. Rep. 7 12577
    [23]
    Li G C et al 2011 Eur. Food Res. Technol. 232 797
    [24]
    Orellana S, Johansen A M and Gazis C 2019 Food Chem. X 1 100007
    [25]
    Geana I et al 2013 Food Chem. 138 1125
    [26]
    Franke B M et al 2008 Eur. Food Res. Technol. 227 701
    [27]
    Liu X N et al 2014 Sensors 15 642
    [28]
    Pérez-Rodríguez M et al 2019 Food Chem. 297 124960
    [29]
    Trevizan L C et al 2009 Spectrochim. Acta B 64 369
    [30]
    Pořízka P et al 2014 Sensors 14 17725
    [31]
    Zhao Y et al 2016 Frontiers Phys. 11 114211
    [32]
    Tian Y et al 2014 Spectrochim. Acta B 102 52
    [33]
    Zhang T L et al 2015 J. Anal. At. Spectrom. 30 368
    [34]
    Barman I et al 2010 Anal. Chem. 82 9719
    [35]
    Zhan L Y et al 2019 Plasma Sci. Technol. 21 034018
    [36]
    Suykens J K T et al 2002 Least Squares Support Vector Machines (Singapore: World Scientific)
    [37]
    Dingari N C et al 2012 Anal. Chem. 84 2686
    [38]
    Houthuys L, Langone R and Suykens J A K 2018 Neurocomputing 282 78
    [39]
    Zhang T L, Tang H S and Li H 2018 J. Chemometr. 32 e2983
    [40]
    Li X W et al 2013 Spectrochim. Acta B 88 180
    [41]
    Lin Z Z et al 2015 Talanta 132 175
    [42]
    Myakalwar A K et al 2011 Talanta 87 53
    [43]
    Xia H and Bakker M C M 2014 Talanta 120 239
    [44]
    Pontes M J C et al 2009 Anal. Chim. Acta 642 12
    [45]
    Balabin M B, Safieva R Z and Lomakina E I 2011 Microchem.J. 98 121
    [46]
    Peng H B et al 2019 Plasma Sci. Technol. 21 034008
  • Related Articles

    [1]Lei LI (黎嫘), Ling ZHANG (张凌), Zong XU (许棕), Shigeru MORITA, Yunxin CHENG (程云鑫), Fengling ZHANG (张丰玲), Wenmin ZHANG (张文敏), Yanmin DUAN (段艳敏), Qing ZANG (臧庆), Shouxin WANG (王守信), Shuyu DAI (戴舒宇), Guizhong ZUO (左桂忠), Zhen SUN (孙震), Liang WANG (王亮), Xiaobin DING (丁晓彬), Jinping QIAN (钱金平), Haiqing LIU (刘海庆), Liqun HU (胡立群). Line identification of extreme ultraviolet (EUV) spectra from low-Z impurity ions in EAST tokamak plasmas[J]. Plasma Science and Technology, 2021, 23(7): 75102-075102. DOI: 10.1088/2058-6272/abfea2
    [2]Xingquan WU (伍兴权), Guosheng XU (徐国盛), Baonian WAN (万宝年), Jens Juul RASMUSSEN, Volker NAULIN, Anders Henry NIELSEN, Liang CHEN (陈良), Ran CHEN (陈冉), Ning YAN (颜宁), Linming SHAO (邵林明). A new model of the L–H transition and H-mode power threshold[J]. Plasma Science and Technology, 2018, 20(9): 94003-094003. DOI: 10.1088/2058-6272/aabb9e
    [3]Wulyu ZHONG (钟武律), Xiaolan ZOU (邹晓岚), Zhongbing SHI (石中兵), Xuru DUAN (段旭如), Min XU (许敏), Zengchen YANG (杨曾辰), Peiwan SHI (施培万), Min JIANG (蒋敏), Guoliang XIAO (肖国梁), Xianming SONG (宋显明), Jiaqi DONG (董家齐), Xuantong DING (丁玄同), Yong LIU (刘永), HL-A team (HL-A团队). Dynamics of oscillatory plasma flows prior to the H-mode in the HL-2A tokamak[J]. Plasma Science and Technology, 2017, 19(7): 70501-070501. DOI: 10.1088/2058-6272/aa6538
    [4]WANG Songbai(王松柏), LEI Guangjiu(雷光玖), LIU Dongping(刘东平), YANG Size(杨思泽). Balmer H α, H β and H γ Spectral Lines Intensities in High-Power RF Hydrogen Plasmas[J]. Plasma Science and Technology, 2014, 16(3): 219-222. DOI: 10.1088/1009-0630/16/3/08
    [5]LIU Peng (刘鹏), XU Guosheng (徐国盛), WANG Huiqian (汪惠乾), JIANG Min (蒋敏), et al.. Reciprocating Probe Measurements of L-H Transition in LHCD H-Mode on EAST[J]. Plasma Science and Technology, 2013, 15(7): 619-622. DOI: 10.1088/1009-0630/15/7/03
    [6]WANG Dongsheng (王东升), GUO Houyang (郭后扬), SHANG Yizi (尚毅梓), GAN Kaifu (甘开福), WANG Huiqian (汪惠乾), CHEN Yingjie (陈颖杰), et al. Radiative Divertor Plasma Behavior in L- and H-Mode Discharges with Argon Injection in EAST[J]. Plasma Science and Technology, 2013, 15(7): 614-618. DOI: 10.1088/1009-0630/15/7/02
    [7]WANG Fumin (王福敏), GAN Kaifu (甘开福), GONG Xianzu (龚先祖), EAST team. Temperature Distribution and Heat Flux on the EAST Divertor Targets in H-Mode[J]. Plasma Science and Technology, 2013, 15(3): 225-229. DOI: 10.1088/1009-0630/15/3/07
    [8]HUANG Xianli (黄贤礼), SHI Zhongbing (石中兵), CUI Zhengying (崔正英), ZHONG Wulv (钟武律), DONG Yunbo (董云波), CHEN Chengyuan (陈程远), FENG Beibin (冯北滨), YAO Lianghua (姚良骅), LIU Zetian (刘泽田), DING Xuantong (丁玄同), et al. Heat Transport During H-Mode in the HL-2A Tokamak[J]. Plasma Science and Technology, 2013, 15(3): 221-224. DOI: 10.1088/1009-0630/15/3/06
    [9]WANG Erhui (王二辉), S. MORITA, M. GOTO, DONG Chunfeng (董春凤). Observation of the Two-Dimensional Distribution of Impurity Line Emissions Using a Space-Resolved EUV Spectrometer in LHD[J]. Plasma Science and Technology, 2013, 15(2): 106-109. DOI: 10.1088/1009-0630/15/2/05
    [10]Y. PIANROJ, T. ONJUN. Simulations of H-Mode Plasmas in Tokamak Using a Complete Core-Edge Modeling in the BALDUR Code[J]. Plasma Science and Technology, 2012, 14(9): 778-788. DOI: 10.1088/1009-0630/14/9/02

Catalog

    Article views (194) PDF downloads (239) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return