Advanced Search+
Cong LI (李聪), Jiajia YOU (游加加), Huace WU (武华策), Ding WU (吴鼎), Liying SUN (孙立影), Jiamin LIU (刘佳敏), Qianhui LI (李千惠), Ran HAI (海然), Xingwei WU (吴兴伟), Hongbin DING (丁洪斌). Temporal and spatial evolution measurement of laser-induced breakdown spectroscopy on hydrogen retention in tantalum[J]. Plasma Science and Technology, 2020, 22(7): 74008-074008. DOI: 10.1088/2058-6272/ab823d
Citation: Cong LI (李聪), Jiajia YOU (游加加), Huace WU (武华策), Ding WU (吴鼎), Liying SUN (孙立影), Jiamin LIU (刘佳敏), Qianhui LI (李千惠), Ran HAI (海然), Xingwei WU (吴兴伟), Hongbin DING (丁洪斌). Temporal and spatial evolution measurement of laser-induced breakdown spectroscopy on hydrogen retention in tantalum[J]. Plasma Science and Technology, 2020, 22(7): 74008-074008. DOI: 10.1088/2058-6272/ab823d

Temporal and spatial evolution measurement of laser-induced breakdown spectroscopy on hydrogen retention in tantalum

Funds: This work was supported by National Key R&D Program of China (No. 2017TFE0301300), the National Natural Science Foundation of China (Nos. 11605023, 11805028, 11861131010), and the China Postdoctoral Science Founda- tion (Nos. 2017T100172, 2016M591423).
More Information
  • Received Date: December 30, 2019
  • Revised Date: March 18, 2020
  • Accepted Date: March 22, 2020
  • Fuel retention measurement on plasma-facing components is an active field of study in magnetic confinement nuclear fusion devices. The laser-induced breakdown spectroscopy (LIBS) diagnostic method has been well demonstrated to detect the elemental distribution in PFCs. In this work, an upgraded co-axis LIBS system based on a linear fiber bundle collection system has been developed to measure the hydrogen (H) retention on a tantalum (Ta) sample under a vacuum condition. The spatial resolution measurement of the different positions of the LIBS plasma can be achieved simultaneously with varying delay times. The temporal and spatial evolution results of LIBS plasma emission show that the H plasma observably expands from the delay times of 0–200ns. The diameter of Ta plasma is about 6mm which is much less than the size of H plasma after 200ns. The difference in the temporal and spatial evolution behaviors between H plasma and Ta plasma is due to the great difference in the atomic mass of H and Ta. The depth profile result shows that H retention mainly exists on the surface of the sample. The temporal and spatial evolution behaviors of the electron excited temperature are consistent with that of the Ta emission. The result will further improve the understanding of the evolution of the dynamics of LIBS plasma and optimize the current collection system of in situ LIBS in fusion devices.
  • [1]
    Bigot B 2019 Nucl. Fusion 59 112001
    [2]
    Brezinsek S et al 2013 Nucl. Fusion 53 083023
    [3]
    Wang Z et al 2014 Front. Phys. 9 419
    [4]
    Li C et al 2016 Front. Phys. 11 114214
    [5]
    Fu Y T et al 2019 Plasma Sci. Technol. 21 030101
    [6]
    Wang Z, Dong F Z and Zhou W D 2015 Plasma Sci. Technol.17 617
    [7]
    Guo L B et al 2016 Front. Phys. 11 115208
    [8]
    Philipps V et al 2013 Nucl. Fusion 53 093002
    [9]
    Li C et al 2015 J. Nucl. Mater. 463 915
    [10]
    Paris P et al 2015 Fusion Eng. Des. 98-99 1349
    [11]
    Semerok A et al 2016 Spectrochim. Acta B 123 121
    [12]
    Li C et al 2017 Phys. Scr. T170 014004
    [13]
    Li C et al 2019 Spectrochim. Acta B 160 105689
    [14]
    Zhao D Y et al 2018 Rev. Sci. Instrum. 89 073501
    [15]
    Hu Z H et al 2017 Plasma Sci. Technol. 19 025502
    [16]
    Dias M et al 2017 J. Nucl. Mater. 492 105
    [17]
    Capitelli M et al 2004 Spectrochim. Acta B 59 271
    [18]
    De Giacomo A et al 2012 Spectrochim. Acta B 78 1
    [19]
    Lu W J et al 2018 Opt. Express 26 30409
    [20]
    Wang J G et al 2015 Plasma Sci. Technol. 17 649
    [21]
    Li C et al 2015 Plasma Sci. Technol. 17 638
    [22]
    Zhao D Y et al 2018 Plasma Sci. Technol. 20 014022
    [23]
    Walker A L, Curry D L and Fannin H B 1994 Appl. Spectrosc.48 333
    [24]
    NIST Atomic Spectra Database (ver.5.7), National Institute of Standards and Technology (https://doi.org/10.18434/T4W30F)
  • Related Articles

    [1]Congyuan PAN (潘从元), Jiao HE (何娇), Guangqian WANG (王广谦), Xuewei DU (杜学维), Yongbin LIU (刘永斌), Yahui SU (苏亚辉). An efficient procedure in quantitative analysis using laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2019, 21(3): 34012-034012. DOI: 10.1088/2058-6272/aaf50f
    [2]Manjeet SINGH, Arnab SARKAR. Time-resolved evaluation of uranium plasma in different atmospheres by laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2018, 20(12): 125501. DOI: 10.1088/2058-6272/aad866
    [3]Zhenhua JIANG (姜振华), Junfeng SHAO (邵俊峰), Tingfeng WANG (王挺峰), Jin GUO (郭劲), Dan ZHANG (张丹), Anmin CHEN (陈安民), Mingxing JIN (金明星). Effect of distances between lens and sample surface on laser-induced breakdown spectroscopy with spatial confinement[J]. Plasma Science and Technology, 2018, 20(8): 85503-085503. DOI: 10.1088/2058-6272/aabc5e
    [4]Yangmin GUO (郭阳敏), Yun TANG (唐云), Yu DU (杜宇), Shisong TANG (唐仕松), Lianbo GUO (郭连波), Xiangyou LI (李祥友), Yongfeng LU (陆永枫), Xiaoyan ZENG (曾晓雁). Cluster analysis of polymers using laser-induced breakdown spectroscopy with K-means[J]. Plasma Science and Technology, 2018, 20(6): 65505-065505. DOI: 10.1088/2058-6272/aaaade
    [5]Dongye ZHAO (赵栋烨), Cong LI (李聪), Yong WANG (王勇), Zhiwei WANG (王志伟), Liang GAO (高亮), Zhenhua HU (胡振华), Jing WU (吴婧), Guang-Nan LUO (罗广南), Hongbin DING (丁洪斌). Temporal and spatial dynamics of optical emission from laser ablation of the first wall materials of fusion device[J]. Plasma Science and Technology, 2018, 20(1): 14022-014022. DOI: 10.1088/2058-6272/aa96a0
    [6]Zhenhua HU (胡振华), Cong LI (李聪), Qingmei XIAO (肖青梅), Ping LIU (刘平), Fang DING (丁芳), Hongmin MAO (毛红敏), Jing WU (吴婧), Dongye ZHAO (赵栋烨), Hongbin DING (丁洪斌), Guang-Nan LUO (罗广南), EAST team. Preliminary results of in situ laser-induced breakdown spectroscopy for the first wall diagnostics on EAST[J]. Plasma Science and Technology, 2017, 19(2): 25502-025502. DOI: 10.1088/2058-6272/19/2/025502
    [7]Ali KHUMAENI, Wahyu Setia BUDI, Asep Yoyo WARDAYA, Rinda HEDWIG, Koo Hendrik KURNIAWAN. Rapid Detection of Oil Pollution in Soil by Using Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2016, 18(12): 1186-1191. DOI: 10.1088/1009-0630/18/12/08
    [8]WANG Jinmei (王金梅), ZHENG Peichao (郑培超), LIU Hongdi (刘红弟), FANG Liang (方亮). Spectral Characteristics of Laser-Induced Graphite Plasma in Ambient Air[J]. Plasma Science and Technology, 2016, 18(11): 1123-1129. DOI: 10.1088/1009-0630/18/11/11
    [9]HE Li’ao (何力骜), WANG Qianqian (王茜蒨), ZHAO Yu (赵宇), LIU Li (刘莉), PENG Zhong (彭中). Study on Cluster Analysis Used with Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2016, 18(6): 647-653. DOI: 10.1088/1009-0630/18/6/11
    [10]WANG Teng (王腾), GAO Xiangdong (高向东), Katayama SEIJI. Analysis of Laser-Induced Plume During Disk Laser Welding at Different Speeds[J]. Plasma Science and Technology, 2013, 15(8): 821-824. DOI: 10.1088/1009-0630/15/8/20
  • Cited by

    Periodical cited type(8)

    1. Cui, Z., Wu, H., Wu, D. et al. Spatiotemporal Evolution of Aluminum-lithium Alloy Plasma Using a Coaxial LIBS System under Vacuum | [真空中同轴LIBS系统下铝锂合金等离子体时空演化行为研究]. Guangzi Xuebao/Acta Photonica Sinica, 2023, 52(9): 0930002. DOI:10.3788/gzxb20235209.0930002
    2. Li, C., Li, Q., Li, L. et al. Characteristic of spatiotemporal evolution of hydrogen isotope in laser-induced plasma under low-pressure environment. Spectrochimica Acta - Part B Atomic Spectroscopy, 2023. DOI:10.1016/j.sab.2023.106735
    3. Yuan, S., Wu, D., Wu, H.-C. et al. Study on the Temporal and Spatial Evolution of Optical Emission From the Laser Induced Multi-Component Plasma of Tungsten Carbide Copper Alloy in Vacuum | [真空下激光烧蚀碳化钨铜多组分等离子体发射光谱的时空演化研究]. Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis, 2023, 43(5): 1384-1400. DOI:10.3964/j.issn.1000-0593(2023)05-1394-07
    4. Hang, Y.-H., Qiu, Y., Zhou, Y. et al. Effects of pulse energy ratios on plasma characteristics of dual-pulse fiber-optic laser-induced breakdown spectroscopy. Chinese Physics B, 2022, 31(2): 024212. DOI:10.1088/1674-1056/ac1fdb
    5. Dwivedi, V., Veis, M., Marín Roldán, A. et al. CF-LIBS study of pure Ta, and WTa + D coating as fusion-relevant materials: a step towards future in situ compositional quantification at atmospheric pressure. European Physical Journal Plus, 2021, 136(11): 1177. DOI:10.1140/epjp/s13360-021-02179-0
    6. Wu, H., Li, C., Wu, D. et al. Characterization of laser-induced breakdown spectroscopy on tungsten at variable ablation angles using a coaxial system in a vacuum. Journal of Analytical Atomic Spectrometry, 2021, 36(10): 2074-2084. DOI:10.1039/d1ja00196e
    7. Xue, B., Tian, Y., Li, N. et al. Spatiotemporal and spectroscopic investigations of the secondary plasma generated during double-pulse laser-induced breakdown in bulk water. Journal of Analytical Atomic Spectrometry, 2020, 35(12): 2880-2892. DOI:10.1039/d0ja00139b
    8. Hou, Z., Jeong, S., Deguchi, Y. et al. Way-out for laser-induced breakdown spectroscopy. Plasma Science and Technology, 2020, 22(7): 070101. DOI:10.1088/2058-6272/ab95f7

    Other cited types(0)

Catalog

    Article views (137) PDF downloads (67) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return