Advanced Search+
Mamat Ali BAKE, Aynisa TURSUN, Aimierding AIMIDULA, Baisong XIE (谢柏松). Two-stage γ ray emission via ultrahigh intensity laser pulse interaction with a laser wakefield accelerated electron beam[J]. Plasma Science and Technology, 2020, 22(10): 105201. DOI: 10.1088/2058-6272/ab988a
Citation: Mamat Ali BAKE, Aynisa TURSUN, Aimierding AIMIDULA, Baisong XIE (谢柏松). Two-stage γ ray emission via ultrahigh intensity laser pulse interaction with a laser wakefield accelerated electron beam[J]. Plasma Science and Technology, 2020, 22(10): 105201. DOI: 10.1088/2058-6272/ab988a

Two-stage γ ray emission via ultrahigh intensity laser pulse interaction with a laser wakefield accelerated electron beam

Funds: The authors would like to thank Dr N Abdukerim for her insightful discussions. This work was financially supported by National Natural Science Foundation of China (Nos. 11664039, 11575150, 11964038 and 11875007). The authors are particularly grateful to CFSA at the University of Warwick for allowing us to use the EPOCH code (developed under UK EPSRC (Grant Nos. EP/G054940/1, EP/ G055165/1 and EP/G056803/1)).
More Information
  • Received Date: February 24, 2020
  • Revised Date: May 28, 2020
  • Accepted Date: May 31, 2020
  • In this study, we investigate the generation of twin γ ray beams in the collision of an ultrahigh intensity laser pulse with a laser wakefield accelerated electron beam using a particle-in-cell simulation. We consider the composed target of a homogeneous underdense preplasma in front of an ultrathin solid foil. The electrons in the preplasma are trapped and accelerated by the wakefield. When the laser pulse is reflected by the thin solid foil, the wakefield accelerated electrons continue to move forward and pass through the foil almost without influence from the reflected laser pulse or foil. Consequently, two groups of γ ray flashes, with tunable time delay and energy, are generated by the wakefield accelerated electron beam interacting with the reflected laser pulse from the foil as well as another counter-propagating petawatt laser pulse behind the foil. Additionally, we study the dependence of the γ photon emission on the preplasma densities, driving laser polarization, and solid foil.
  • [1]
    Tajima T and Dawson J M 1979 Phys. Rev. Lett. 43 267
    [2]
    Malka V et al 2002 Science 298 1596
    [3]
    Wang X M et al 2013 Nat. Commun. 4 1988
    [4]
    Leemans W P et al 2014 Phys. Rev. Lett. 113 245002
    [5]
    Gonsalves A J et al 2019 Phys. Rev. Lett. 122 084801
    [6]
    Powers N D et al 2014 Nat. Photon. 8 28
    [7]
    Lemos N et al 2019 Phys. Plasmas 26 083110
    [8]
    Luo J et al 2016 Sci. Rep. 6 29101
    [9]
    Albert F et al 2016 Plasma Phys. Control. Fusion 58 103001
    [10]
    Danson C et al 2015 High Power Laser Sci. Eng. 3 e3
    [11]
    Turcu I C E et al 2016 Rom. Rep. Phys. 68 S145 (http://www.eli-np.ro/scientific-papers/S145.pdf)
    [12]
    Mourou G et al 2013 Nat. Photon. 7 258
    [13]
    Di Piazza A et al 2012 Rev. Mod. Phys. 84 1177
    [14]
    Yan W C et al 2017 Nat. Photon. 11 514
    [15]
    Benedetti A, Tamburini M and Keitel C H 2018 Nat. Photon.12 319
    [16]
    Vranic M et al 2018 Sci. Rep. 8 4702
    [17]
    Bake M A et al 2018 Front. Phys. 13 135202
    [18]
    Chen S et al 2013 Phys. Rev. Lett. 110 155003
    [19]
    Sarri G et al 2014 Phys. Rev. Lett. 113 224801
    [20]
    Lobet M et al 2017 Phys. Rev. Accel. Beams 20 043401
    [21]
    Chang H X et al 2017 Sci. Rep. 7 45031
    [22]
    Yu J Q et al 2019 Phys. Rev. Lett. 122 014802
    [23]
    Hou Y J et al 2019 Plasma Sci. Technol. 21 085201
    [24]
    Cipiccia S et al 2012 J. Appl. Phys. 111 063302
    [25]
    Cipiccia S et al 2011 Nat. Phys. 7 867
    [26]
    Ta Phuoc K et al 2012 Nat. Photon. 6 308
    [27]
    Wenz J et al 2019 Nat. Photon. 13 263
    [28]
    Liu J B et al 2019 Phys. Plasmas 26 033109
    [29]
    Gu Y J and Weber S 2018 Opt. Express 26 19932
    [30]
    Thomas A G R et al 2012 Phys. Rev. X 2 041004
    [31]
    Liu J X et al 2016 Plasma Phys. Control. Fusion 58 125007
    [32]
    Cole J M et al 2018 Phys. Rev. X 8 011020
    [33]
    Poder K et al 2018 Phys. Rev. X 8 031004
    [34]
    Arber T D et al 2015 Plasma Phys. Control. Fusion 57 113001
    [35]
    Jansen O et al 2018 Plasma Phys. Control. Fusion 60 054006
  • Related Articles

    [1]Mamat Ali BAKE, Suo TANG, Baisong XIE. Bright γ-ray source with large orbital angular momentum from the laser near-critical-plasma interaction[J]. Plasma Science and Technology, 2022, 24(9): 095001. DOI: 10.1088/2058-6272/ac67bd
    [2]Mi TIAN, Ziyu CHEN. Highly efficient γ-ray generation by 10 PW-class lasers irradiating heavy-ion plasmas[J]. Plasma Science and Technology, 2022, 24(7): 075505. DOI: 10.1088/2058-6272/ac5d09
    [3]Yajuan HOU (侯雅娟), Baisong XIE (谢柏松), Chong LV (吕冲), Feng WAN (弯峰), Li WANG (王莉), Nureli YASEN, Haibo SANG (桑海波), Guoxing XIA (夏国兴). High density γ-ray emission and dense positron production via multi-laser driven circular target[J]. Plasma Science and Technology, 2019, 21(8): 85201-085201. DOI: 10.1088/2058-6272/ab1602
    [4]A A ABID, Quanming LU (陆全明), Huayue CHEN (陈华岳), Yangguang KE (柯阳光), S ALI, Shui WANG (王水). Effects of electron trapping on nonlinear electron-acoustic waves excited by an electron beam via particle-in-cell simulations[J]. Plasma Science and Technology, 2019, 21(5): 55301-055301. DOI: 10.1088/2058-6272/ab033f
    [5]Hong LI (李鸿), Xingyu LIU (刘星宇), Zhiyong GAO (高志勇), Yongjie DING (丁永杰), Liqiu WEI (魏立秋), Daren YU (于达仁), Xiaogang WANG (王晓钢). Particle-in-cell simulation for effect of anode temperature on discharge characteristics of a Hall effect thruster[J]. Plasma Science and Technology, 2018, 20(12): 125504. DOI: 10.1088/2058-6272/aaddf2
    [6]Feng WAN (弯峰), Chong LV (吕冲), Moran JIA (贾默然), Baisong XIE (谢柏松). Enhanced photon emission and pair production in laser-irradiated plasmas[J]. Plasma Science and Technology, 2017, 19(7): 75201-075201. DOI: 10.1088/2058-6272/aa64ed
    [7]ZHANG Ya (张雅), LI Lian (李莲), JIANG Wei (姜巍), YI Lin (易林). Numerical Approach of Interactions of Proton Beams and Dense Plasmas with Quantum-Hydrodynamic/Particle-in-Cell Model[J]. Plasma Science and Technology, 2016, 18(7): 720-726. DOI: 10.1088/1009-0630/18/7/04
    [8]GUO Jun (郭俊), YANG Qinglei (杨清雷), ZHU Guoquan (朱国全), and LI Bo (李波). A Particle-in-Cell Simulation of Double Layers and Ion-Acoustic Waves[J]. Plasma Science and Technology, 2013, 15(11): 1088-1092. DOI: 10.1088/1009-0630/15/11/02
    [9]WU Mingyu (吴明雨), LU Quanming (陆全明), ZHU Jie (朱洁), WANG Peiran (王沛然), WANG Shui (王水). Electromagnetic Particle-in-Cell Simulations of Electron Holes Formed During the Electron Two-Stream Instability[J]. Plasma Science and Technology, 2013, 15(1): 17-24. DOI: 10.1088/1009-0630/15/1/04
    [10]HU Zhidan(胡志丹), SHENG Zhengming (盛政明), Ding Wenjun (丁文君), WANG Weimin (王伟民), DONG Quanli (董全力), ZHANG Jie(张杰), et al. Electromagnetic Emission from Laser Wakefields in Magnetized Underdense Plasmas[J]. Plasma Science and Technology, 2012, 14(10): 874-879. DOI: 10.1088/1009-0630/14/10/04

Catalog

    Article views (133) PDF downloads (125) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return