Advanced Search+
Tao WU (吴涛), Jun HE (何俊), Li YANG (杨李), Peixiang LU (陆培祥). A study on soft x-ray spectra from pulsed 1 μm Nd:YAG laser-induced ytterbium plasmas[J]. Plasma Science and Technology, 2020, 22(10): 105503. DOI: 10.1088/2058-6272/aba1da
Citation: Tao WU (吴涛), Jun HE (何俊), Li YANG (杨李), Peixiang LU (陆培祥). A study on soft x-ray spectra from pulsed 1 μm Nd:YAG laser-induced ytterbium plasmas[J]. Plasma Science and Technology, 2020, 22(10): 105503. DOI: 10.1088/2058-6272/aba1da

A study on soft x-ray spectra from pulsed 1 μm Nd:YAG laser-induced ytterbium plasmas

Funds: he authors wish to acknowledge support from Guangdong Major Project of Basic and Applied Basic Research (No. 2019B030302003) and Hubei Key Laboratory of Optical Information and Pattern Recognition open fund (No. 201908).
More Information
  • Received Date: April 30, 2020
  • Revised Date: June 29, 2020
  • Accepted Date: June 30, 2020
  • The Nd:YAG laser with a wavelength of 1.064 μm was used to generate plasmas on a high-purity solid ytterbium (70Yb) target in a vacuum chamber. The soft x-ray time- and space-integration spectra from the Yb plasmas were measured in the wavelength range of 1.0–8.5 nm under different power densities. The atomic spectral data of the unresolved transition arrays from highly charged Yb ions were calculated based on Cowan's suite of codes, including configuration interaction. The calculated Gaussian envelope of the emission determined by the weighted spontaneous transition rates was compared with the experimental spectra, and a good agreement between them was obtained. The spatial-temporal evolutions of the plasmas under the experimental conditions are simulated based on the collisional-radiative model, enabling the understanding of the mechanism of the plasma conditions for optimal water window waveband emission output.
  • [1]
    Mantouvalou I et al 2015 Rev. Sci. Instrum. 86 035116
    [2]
    Ma T et al 2008 Rev. Sci. Instrum. 79 10E312
    [3]
    Vinokhodov A Y et al 2016 J. Appl. Phys. 120 163304
    [4]
    Ayele M G et al 2017 Nucl. Instrum. Methods Phys. Res. Sect.B Beam Interact. Mater. Atoms 411 35
    [5]
    Narayanan T 2009 Curr. Opin. Colloid Interface Sci. 14 409
    [6]
    Reagan B A et al 2014 Phys. Rev. A 89 053820
    [7]
    O’Sullivan G et al 2015 J. Phys. B. Atomic Mol. Opt. Phys. 48 144025
    [8]
    Shao G D et al 2019 Appl. Phys. B Lasers Opt. 125 5
    [9]
    Wachulak P W et al 2010 Nucl. Instrum. Methods Phys. Res.Sect. B Beam Interact. Mater. Atoms 268 1692
    [10]
    Adam J F, Moy J P and Susini J 2005 Rev. Sci. Instrum. 76 091301
    [11]
    Li B W et al 2011 Proc. of SPIE 8139 81390P
    [12]
    Pertot Y et al 2017 Science 355 264
    [13]
    Amano S 2018 Jpn. J. Appl. Phys. 57 126201
    [14]
    Wu T et al 2017 Opt. Commun. 385 143
    [15]
    Wu T et al 2015 J. Phys. B Atomic Mol. Opt. Phys. 48 165005
    [16]
    Wachulak P W 2016 Opto-Electron. Rev. 24 144
    [17]
    Kim D et al 2006 Appl. Phys. Lett. 88 142904
    [18]
    Zakharov V S 2017 J. Phys. D Appl. Phys. 50 035202
    [19]
    Zhukov A V et al 2018 Appl. Phys. B 124 10
    [20]
    Li B W et al 2012 J. Phys. B Atomic Mol. Opt. Phys. 45 245004
    [21]
    Wu M X et al 2016 J. Phys. B Atomic Mol. Opt. Phys. 49 062003
    [22]
    Wu T et al 2018 Spectrosc. Spectral Anal. 38 692 (in Chinese)
    [23]
    Tamura T et al 2018 Opt. Lett. 43 2042
    [24]
    Lokasani R et al 2019 Opt. Express 27 33351
    [25]
    Vrba P et al 2017 Phys. Plasmas 24 123301
    [26]
    John C et al 2019 Opt. Lett. 44 1439
    [27]
    Higashiguchi T et al 2012 Appl. Phys. Lett. 100 014103
    [28]
    Wu T et al 2016 J. Phys. B Atomic Mol. Opt. Phys. 49 035001
    [29]
    Wu T et al 2015 J. Phys. B Atomic Mol. Opt. Phys. 48 245007
    [30]
    Collins P D B 1982 Phys. Bull. 33 243
    [31]
    Kumagai H et al 2010 J. Phys. Condens. Matter 22 474008
    [32]
    Colombant D and Tonon G F 1973 J. Appl. Phys. 44 3524
    [33]
    Badnell N R et al 2011 J. Phys. B Atomic Mol. Opt. Phys. 44 135201
    [34]
    Li B W et al 2012 Phys. Rev. A 85 052706
    [35]
    Djaoui A 1996 A user guide for the laser plasma simulation code: MED103 Report Number: RAL-TR-96-099
  • Cited by

    Periodical cited type(6)

    1. Zhang, Z., Wen, H.F., Li, L. et al. Imaging the distribution of a surface plasmon induced electromagnetic field at the nanoscale with MFSM. Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 2024, 63(10): 106001. DOI:10.35848/1347-4065/ad82c4
    2. Wei, G., Nie, Q., Zhang, Z. et al. Numerical investigation of a plasma-dielectric-plasma waveguide with tunable Fano resonances. Optik, 2024. DOI:10.1016/j.ijleo.2024.171819
    3. Gao, M., Wang, B., Guo, B. Propagation of surface magnetoplasmon polaritons in a symmetric waveguide with two-dimensional electron gas. Plasma Science and Technology, 2023, 25(9): 095001. DOI:10.1088/2058-6272/acd09e
    4. Pei, R., Liu, D., Zhang, Q. et al. Fluctuation of Plasmonically Induced Transparency Peaks within Multi-Rectangle Resonators. Sensors, 2023, 23(1): 226. DOI:10.3390/s23010226
    5. Wang, B., Guo, B. Chiral Berry plasmon dispersion of the two-dimensional electron gas based on a quantum hydrodynamic model. Physics of Plasmas, 2022, 29(8): 082101. DOI:10.1063/5.0097873
    6. Gric, T., Rafailov, E. Absorption enhancement in hyperbolic metamaterials by means of magnetic plasma. Applied Sciences (Switzerland), 2021, 11(11): 4720. DOI:10.3390/app11114720

    Other cited types(0)

Catalog

    Article views (133) PDF downloads (132) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return