Advanced Search+
Xueqiang CAO (曹学强), Li ZHANG (张立), Zhongchen WU (武中臣), Zongcheng LING (凌宗成), Jialun LI (李加伦), Kaichen GUO (郭恺琛). Quantitative analysis modeling for the ChemCam spectral data based on laser-induced breakdown spectroscopy using convolutional neural network[J]. Plasma Science and Technology, 2020, 22(11): 115502. DOI: 10.1088/2058-6272/aba5f6
Citation: Xueqiang CAO (曹学强), Li ZHANG (张立), Zhongchen WU (武中臣), Zongcheng LING (凌宗成), Jialun LI (李加伦), Kaichen GUO (郭恺琛). Quantitative analysis modeling for the ChemCam spectral data based on laser-induced breakdown spectroscopy using convolutional neural network[J]. Plasma Science and Technology, 2020, 22(11): 115502. DOI: 10.1088/2058-6272/aba5f6

Quantitative analysis modeling for the ChemCam spectral data based on laser-induced breakdown spectroscopy using convolutional neural network

Funds: This work is supported by the Pre-research project on Civil Aerospace Technologies (No. D020102) funded by China National Space Administration (CNSA). We also thank the funding from National Natural Science Foundation of China (Nos. U1931211 and 41573056), the Natural Science Foundation of Shandong Province (No. ZR2019MD008) and the Major Research Project of Shandong Province (No. GG201809130208).
More Information
  • Received Date: March 26, 2020
  • Revised Date: July 12, 2020
  • Accepted Date: July 13, 2020
  • Laser-induced breakdown spectroscopy (LIBS) has been applied to many fields for the quantitative analysis of diverse materials. Improving the prediction accuracy of LIBS regression models is still of great significance for the Mars exploration in the near future. In this study, we explored the quantitative analysis of LIBS for the one-dimensional ChemCam (an instrument containing a LIBS spectrometer and a Remote Micro-Imager) spectral data whose spectra are produced by the ChemCam team using LIBS under the Mars-like atmospheric conditions. We constructed a convolutional neural network (CNN) regression model with unified parameters for all oxides, which is efficient and concise. CNN that has the excellent capability of feature extraction can effectively overcome the chemical matrix effects that impede the prediction accuracy of regression models. Firstly, we explored the effects of four activation functions on the performance of the CNN model. The results show that the CNN model with the hyperbolic tangent (tanh) function outperforms the CNN models with the other activation functions (the rectified linear unit function, the linear function and the Sigmoid function). Secondly, we compared the performance among the CNN models using different optimization methods. The CNN model with the stochastic gradient descent optimization and the initial learning rate=0.0005 achieves satisfactory performance compared to the other CNN models. Finally, we compared the performance of the CNN model, the model based on support vector regression (SVR) and the model based on partial least square regression (PLSR). The results exhibit the CNN model is superior to the SVR model and the PLSR model for all oxides. Based on the above analysis, we conclude the CNN regression model can effectively improve the prediction accuracy of LIBS.
  • [1]
    Rao A P et al 2019 Atoms 7 84
    [2]
    Cremers D A et al 2012 Appl. Spectrosc. 66 250
    [3]
    Shattan M B et al 2017 Appl. Opt. 56 9868
    [4]
    Thomas N H et al 2018 J. Geophys. Res.-Planets 123 1996
    [5]
    Maurice S et al 2016 J. Anal. Atom. Spectrom. 31 863
    [6]
    Grotzinger J P et al 2012 J. Space Sci. Rev. 170 5
    [7]
    Le Mouélic S et al 2015 Icarus 249 93
    [8]
    Murdoch N et al 2019 Planet. Space Sci. 165 260
    [9]
    Cai T N et al 2019 Spectrosc. Spect. Anal. 39 1623 (in Chinese)
    [10]
    Zhang B H et al 2019 Sensors 19 1727
    [11]
    Sanghapi H K et al 2016 Spectrochim. Acta B 122 9
    [12]
    Barimani S and Kleinebudde P 2017 Eur. J. Pharm. Biopharm.119 28
    [13]
    Liu F et al 2018 Sensors 18 705
    [14]
    Anderson R B et al 2017 Spectrochim. Acta B 129 49
    [15]
    Duan H W, Han L J and Huang G Q 2019 Molecules 24 3753
    [16]
    Wang T et al 2018 Spectrochim. Acta B 149 300
    [17]
    Shi Q et al 2015 J. Anal. Atom. Spectrom. 30 2384
    [18]
    Dyar M D et al 2012 Spectrochim. Acta B 70 51
    [19]
    Zhang X L et al 2019 Anal. Chim. Acta 1058 48
    [20]
    Clegg S M et al 2017 Spectrochim. Acta B 129 64
    [21]
    Wiens R C et al 2013 Spectrochim. Acta B 82 1
    [22]
    Krizhevsky A, Sutskever I and Hinton G E 2017 Commun.ACM 60 84
    [23]
    Muhammad K et al 2018 IEEE Access 6 18174
    [24]
    Manit J et al 2020 IET Biometrics 9 31
    [25]
    Lu C X et al 2019 Plasma Sci. Technol. 21 34014
    [26]
    Ioffe S and Szegedy C 2015 Batch normalization: accelerating deep network training by reducing internal covariate shift Proc. 32nd Int. Conf. on Machine Learning (Lille, France) (IMLS) p 448
    [27]
    Glorot X and Bengio Y 2010 Understanding the difficulty of training deep feedforward neural networks Proc. 13th Int.Conf. on Artificial Intelligence and Statistics (Chia Laguna Resort, Sardinia Italy) (AISTATS) p 249
    [28]
    He K M et al 2015 Delving deep into rectifiers: surpassing human-level performance on ImageNet classification Proc.2015 IEEE Int. Conf. on Computer Vision (Santiago, Chile:IEEE) p 1026
    [29]
    Darken C et al 1992 Learning rate schedules for faster stochastic gradient search Neural Networks for Signal Processing II Proc. 1992 IEEE Workshop (Helsingoer,Denmark) (IEEE) p 3
    [30]
    Kingma D P and Ba J L 2015 Adam: a method for stochastic optimization Proc. 3rd Int. Conf. on Learning Representations (San Diego, USA) (ICLR) p 1
    [31]
    Vapnik V N 1999 IEEE Trans. Neural Netw. Learn. 10 988
    [32]
    Wold S, Sjöström M and Eriksson L 2001 Chemometr. Intell.Lab. 58 109
  • Related Articles

    [1]Zhipeng CHEN, Lizhi ZHU, Xin XU, Wei ZHENG, Ming ZHANG, Li GAO, Minghui XIA, Jie YANG, Mingchong ZHU, Zhigang HAO, Shaodong JIAO, Zhifeng CHENG, Zhoujun YANG, Xiaoqing ZHANG, Zhongyong CHEN, Nengchao WANG, Yonghua DING, Ge ZHUANG, Kenneth W GENTLE, Yunfeng LIANG, Yuan PAN, the J-TEXT Team. Realization of divertor configuration discharge in J-TEXT tokamak[J]. Plasma Science and Technology, 2022, 24(12): 124008. DOI: 10.1088/2058-6272/aca0dc
    [2]J COSFELD, P DREWS, B BLACKWELL, M JAKUBOWSKI, H NIEMANN, D ZHANG, Y FENG, the Wendelstein -X Team. Numerical estimate of multi-species ion sound speed of Langmuir probe interpretations in the edge plasmas of Wendelstein 7-X[J]. Plasma Science and Technology, 2020, 22(8): 85102-085102. DOI: 10.1088/2058-6272/ab8974
    [3]Kristel GHOOS, Heinke FRERICHS, Wouter DEKEYSER, Giovanni SAMAEY, Martine BAELMANS. Numerical accuracy and convergence with EMC3-EIRENE[J]. Plasma Science and Technology, 2020, 22(5): 54001-054001. DOI: 10.1088/2058-6272/ab5866
    [4]P DREWS, H NIEMANN, J COSFELD, Y GAO, J GEIGER, O GRULKE, M HENKEL, D HÖSCHEN, K HOLLFELD, C KILLER, AKRÄMER-FLECKEN, Y LIANG, S LIU, D NICOLAI, O NEUBAUER, M RACK, B SCHWEER, G SATHEESWARAN, L RUDISCHHAUSER, N SANDRI, N WANG, the W-X Team. Magnetic configuration effects on the edge heat flux in the limiter plasma on W7-X measured using the infrared camera and the combined probe[J]. Plasma Science and Technology, 2018, 20(5): 54003-054003. DOI: 10.1088/2058-6272/aaa968
    [5]Pengfei ZHANG (张鹏飞), Ling ZHANG (张凌), Zhenwei WU (吴振伟), Zong XU (许棕), Wei GAO (高伟), Liang WANG (王亮), Qingquan YANG (杨清泉), Jichan XU (许吉禅), Jianbin LIU (刘建斌), Hao QU (屈浩), Yong LIU (刘永), Juan HUANG (黄娟), Chengrui WU (吴成瑞), Yumei HOU (侯玉梅), Zhao JIN (金钊), J D ELDER, Houyang GUO (郭后扬). OEDGE modeling of plasma contamination efficiency of Ar puffing from different divertor locations in EAST[J]. Plasma Science and Technology, 2018, 20(4): 45104-045104. DOI: 10.1088/2058-6272/aaa7e8
    [6]Guozhong DENG (邓国忠), Xiaoju LIU (刘晓菊), Liang WANG (王亮), Shaocheng LIU (刘少承), Jichan XU (许吉禅), Wei FENG (冯威), Jianbin LIU (刘建斌), Huan LIU (刘欢), Xiang GAO (高翔). Modeling of divertor power footprint widths on EAST by SOLPS5.0/B2.5-Eirene[J]. Plasma Science and Technology, 2017, 19(4): 45101-045101. DOI: 10.1088/2058-6272/aa5802
    [7]WANG Dongsheng (王东升), GUO Houyang (郭后扬), SHANG Yizi (尚毅梓), GAN Kaifu (甘开福), WANG Huiqian (汪惠乾), CHEN Yingjie (陈颖杰), et al. Radiative Divertor Plasma Behavior in L- and H-Mode Discharges with Argon Injection in EAST[J]. Plasma Science and Technology, 2013, 15(7): 614-618. DOI: 10.1088/1009-0630/15/7/02
    [8]LI Chengyue (李承跃). Numerical Simulation of the Neutralized α Particle Transport near the Divertor Plate Region[J]. Plasma Science and Technology, 2012, 14(10): 886-890. DOI: 10.1088/1009-0630/14/10/06
    [9]ZHANG Ling, XU Guosheng, DING Siye, GAO Wei, WU Zhenwei, CHEN Yingjie, HUANG Juan. Estimation of Neutral Density in Edge Plasma with Double Null Configuration in EAST[J]. Plasma Science and Technology, 2011, 13(4): 431-434.
    [10]T. TAKIZUKA. Development of the PARASOL Code and Full Particle Simulation of Tokamak Plasma with an Open-Field SOL-Divertor Region Using PARASOL[J]. Plasma Science and Technology, 2011, 13(3): 316-325.
  • Cited by

    Periodical cited type(6)

    1. Xie, W., Liang, Y., Jiang, Z. et al. Application of three-dimensional MHD equilibrium calculation coupled with plasma response to island divertor experiments on J-TEXT. Plasma Science and Technology, 2024, 26(11): 115104. DOI:10.1088/2058-6272/ad70e1
    2. Xu, S., Liang, Y., Knieps, A. et al. Modeling of plasma beta effects on the island divertor transport in the standard configuration of W7-X. Nuclear Fusion, 2023, 63(6): 066005. DOI:10.1088/1741-4326/acc7b8
    3. Wang, J., Chen, Z., Cheng, Z. et al. Impurity emissivity tomographic reconstruction by CCD imaging system on J-TEXT. 2023. DOI:10.1109/CIYCEE59789.2023.10401533
    4. Liang, Y., Chen, Z., Wang, N. et al. Towards advanced divertor configurations on the J-TEXT tokamak. Plasma Science and Technology, 2022, 24(12): 124021. DOI:10.1088/2058-6272/acaa8d
    5. Li, B., Wang, T., Nie, L. et al. Reconstruction of the emissivity and flow for Doppler coherence imaging spectroscopy (CIS) on J-TEXT. Fusion Engineering and Design, 2022. DOI:10.1016/j.fusengdes.2022.113271
    6. Li, S., Wang, N., Ding, Y. et al. Impact of the non-axisymmetric SOL current driven by a biased electrode on the diverted J-TEXT plasma. Plasma Physics and Controlled Fusion, 2022, 64(7): 075005. DOI:10.1088/1361-6587/ac72bf

    Other cited types(0)

Catalog

    Article views (180) PDF downloads (368) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return