Advanced Search+
Peng HU (胡鹏), Daren YU (于达仁), Yan SHEN (沈岩). Magnet stage optimization of 5 kW multicusped field thruster[J]. Plasma Science and Technology, 2020, 22(9): 94015-094015. DOI: 10.1088/2058-6272/aba680
Citation: Peng HU (胡鹏), Daren YU (于达仁), Yan SHEN (沈岩). Magnet stage optimization of 5 kW multicusped field thruster[J]. Plasma Science and Technology, 2020, 22(9): 94015-094015. DOI: 10.1088/2058-6272/aba680

Magnet stage optimization of 5 kW multicusped field thruster

Funds: The authors would like to acknowledge the support of National Natural Science Foundation of China (No. 51806011), the Advance Research Project of Equipment Development (No. 30501050203), and the Advance Research Project of the Civil Space Program (No. D010509)
More Information
  • Received Date: December 29, 2019
  • Revised Date: July 13, 2020
  • Accepted Date: July 14, 2020
  • The multi-cusped field thruster is a unique electric thruster device, which has many advantages such as long lifetime, large-range thrust throttling ability, high thrust density, and low mass. The thruster employs several alternating polarity permanent magnets to create a periodic magnetic field with several cusps. Previous studies have indicated that the basic ionization and acceleration processes are directly related to the electron motion behavior, which mainly depends on the magnetic field characteristics. The magnet number and magnet stage length are two key magnetic field parameters that have important effects on the thruster performances. In this paper, both the magnet number and magnet stage length parameters are studied for the optimization of a 5 kW multi-cusped field thruster. The results indicate that the three-stage thruster has a better electron confinement than the two-stage thruster. It has lower ion energy loss at the wall, and shows a higher ionization rate. Therefore, the three-stage magnetic field is a superior magnetic field configuration. Besides, the three-stage magnetic field simulation results indicate that an optimal accelerating electric field distribution and ionization region distribution could be obtained when the magnet length ratio is 78:25:20.
  • [1]
    Kornfeld G, Koch N and Coustou G 2003 First test results of the HEMP thruster concept Proc. 28th Int. Electric Propulsion Conf. (Toulouse, France) (IEPC)
    [2]
    Koch N, Harmann HP and Kornfeld G 2005 First test results of the 1 to 15 kW coaxial HEMP 30250 thruster Proc. 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conf. & Exhibit 2005) (Tucson, USA(AIAA)
    [3]
    Kornfeld G, Harmann H P and Koch N 2005 Status and limited life test results of the cylindrical HEMP 3050 thruster Proc.41st AIAA/ASME/SAE/ASEE Joint Propulsion Conf. & Exhibit (Tucson, USA) (AIAA)
    [4]
    Kornfeld G, Koch N and Harmann H P 2007 Physics and evolution of HEMP-thrusters Proc. 30th Int. Electric Propulsion Conf. (Florence, Italy) (IEPC)
    [5]
    Kornfeld G, Koch N and Harmann H P 2005 Development and test status of the thales W/Os mixed metal matrix hollow cathode neutralizer HKN 5000 Proc. 29th Int. Electric Propulsion Conf. (Princeton, USA) (IEPC)
    [6]
    Kornfeld G et al 2006 High power HEMP-thruster module, status and results of a DLR and ESA development program Proc. 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conf.& Exhibit (Sacramento, USA) (AIAA)
    [7]
    Courtney D G and Martínez-Sánchez M 2007 Diverging cusped-field hall thruster (DCHT) Proc. 30th Int. Electric Propulsion Conf. (Florence, Italy) (IEPC)
    [8]
    Harmann H P, Koch N and Kornfeld G 2007 The ULAN test station and its diagnostic package for thruster characterization Proc. 30th Int. Electric Propulsion Conf.(Florence, Italy) (IEPC)
    [9]
    Harmann H P, Koch N and Kornfeld G 2007 Status of the THALES high efficiency multi stage plasma thruster development for HEMP-T 3050 and HEMP-T 30250 Proc.30th Int. Electric Propulsion Conf. (Florence, Italy) (IEPC)
    [10]
    Matyash K et al 2009 Comparison of SPT and HEMP thruster concepts from kinetic simulations Proc. 31st Int. Electric Propulsion Conf. (Ann Arbor, USA) (IEPC)
    [11]
    Genovese A et al 2011 Endurance testing of HEMPT-based ion propulsion modules for SmallGEO Proc. 32nd Int. Electric Propulsion Conf. (Wiesbaden, Germany) (IEPC)
    [12]
    Koch N et al 2011 The HEMPT concept - a survey on theoretical considerations and experimental evidences Proc. 32nd Int.Electric Propulsion Conf. (Wiesbaden, Germany) (IEPC)
    [13]
    Koch N et al 2011 Development, qualification and delivery status of the HEMPT based ion propulsion system for SmallGEO Proc. 32nd Int. Electric Propulsion Conf.(Wiesbaden, Germany) (IEPC)
    [14]
    Matyash K et al 2009 Kinetic simulation of the stationary HEMP thruster including the near-field plume region Proc.31st Int. Electric Propulsion Conf. (Ann Arbor, USA) (IEPC)
    [15]
    Schneider R et al 2009 Contrib. Plasma Phys. 49 655
    [16]
    Martínez-Sánchez M and Ahedo E 2011 Phys. Plasmas 18 033509
    [17]
    Liu H et al 2015 Chin. Phys. 24 085202
    [18]
    Liu H et al 2015 Contrib. Plasma Phys. 55 545
    [19]
    Yu D R et al 2018 Plasma Sources Sci. Technol. 27 075012
    [20]
    Hu P et al 2019 Plasma Res. Express 1 025006
    [21]
    Hu P et al 2015 Phys. Plasmas 22 103502
    [22]
    Hu P et al 2016 AIP Adv. 6 095003
    [23]
    Szabo J et al 2014 J. Propuls. Power 30 197
    [24]
    Liu H et al 2010 J. Phys. D: Appl. Phys. 43 165202
    [25]
    Szabo J 2001 Fully kinetic numerical modeling of a plasma thruster PhD Thesis Massachusetts Institute of Technology
    [26]
    Jiang Y et al 2017 J. Phys. D: Appl. Phys. 51 035201
    [27]
    Yuan T N et al 2020 AIP Adv. 10 045115
    [28]
    Xia Q M et al 2019 Acta Astronaut. 164 69
    [29]
    Cao S et al 2018 Phys. Plasmas 25 103512
    [30]
    Xia Q M, Xie K and Wang N F 2019 Vacuum 169 108870
    [31]
    Qin Y et al 2017 Acta Astronaut. 134 265
    [32]
    Liu H et al 2014 Phys. Plasmas 21 090706
    [33]
    Zhao Y J et al 2014 J. Phys. D: Appl. Phys. 47 045201
    [34]
    Hu P et al 2016 J. Phys. D: Appl. Phys. 49 285201
  • Related Articles

    [1]Zebin WANG, Junbiao LIU, Aiguo CHEN, Dazheng WANG, Pengfei WANG, Li HAN. Optimization of electron beams for ion bombardment secondary emission electron gun[J]. Plasma Science and Technology, 2025, 27(3): 035501. DOI: 10.1088/2058-6272/ad9819
    [2]Rui TAN, Guanrong HANG, Pingyang WANG. Optimization of magnetic field design for Hall thrusters based on a genetic algorithm[J]. Plasma Science and Technology, 2024, 26(7): 075503. DOI: 10.1088/2058-6272/ad3286
    [3]Rumeng WANG, Yong YANG, Shaoyu WANG, Ming ZHANG. Dynamic performance of linear electromagnetic actuators in a stray magnetic field: theoretical analysis and experimental verification[J]. Plasma Science and Technology, 2022, 24(12): 124019. DOI: 10.1088/2058-6272/ac989b
    [4]Xianhai PANG (庞先海), Zixi LIU (刘紫熹), Shixin XIU (修士新), Dingyu FENG (冯顶瑜). Arc characteristics during the instability stage on transverse magnetic field contacts[J]. Plasma Science and Technology, 2018, 20(9): 95505-095505. DOI: 10.1088/2058-6272/aac50a
    [5]Liqiu WEI (魏立秋), Wenbo LI (李文博), Yongjie DING (丁永杰), Daren YU (于达仁). Effect of low-frequency oscillation on performance of Hall thrusters[J]. Plasma Science and Technology, 2018, 20(7): 75502-075502. DOI: 10.1088/2058-6272/aabae0
    [6]Chengzhi CAO (曹诚志), Yudong PAN (潘宇东), Zhiwei XIA (夏志伟), Bo LI (李波), Tao JIANG (江涛), Wei LI (李伟). Recent developments in the structural design and optimization of ITER neutral beam manifold[J]. Plasma Science and Technology, 2018, 20(2): 25602-025602. DOI: 10.1088/2058-6272/aa9562
    [7]DUAN Ping (段萍), BIAN Xingyu (边兴宇), CAO Anning (曹安宁), LIU Guangrui (刘广睿), CHEN Long (陈龙), YIN Yan (殷燕). Effect of Segmented Electrode Length on the Performances of an Aton-Type Hall Thruster[J]. Plasma Science and Technology, 2016, 18(5): 525-530. DOI: 10.1088/1009-0630/18/5/14
    [8]ZHANG Shanwen(张善文), SONG Yuntao(宋云涛), WANG Zhongwei(王忠伟), LU Su(卢速), JI Xiang(戢翔), DU Shuangsong(杜双松), LIU Xufeng(刘旭峰), FENG Changle(冯昌乐), YANG Hong(杨洪), WANG Songke(王松可), LUO Zhiren(罗志仁). Mechanical Analysis and Optimization of ITER Upper ELM Coil & Feeder[J]. Plasma Science and Technology, 2014, 16(8): 794-799. DOI: 10.1088/1009-0630/16/8/11
    [9]ZHAO Qing(赵青), XING Xiaojun(邢晓俊), XUAN Yinliang(宣银良), LIU Shuzhang(刘述章). The Influence of Magnetic Field on Antenna Performance in Plasma[J]. Plasma Science and Technology, 2014, 16(6): 614-619. DOI: 10.1088/1009-0630/16/6/14
    [10]JI Xiang (戢翔), SONG Yuntao (宋云涛), SHEN Guang (沈光), CAO Lei (曹磊), ZHOU Zibo (周自波), XU Tiejun (许铁军), LIU Xufeng (刘旭峰), XU Weiwei (徐薇薇), PENG Xuebing (彭学兵), WANG Shengming (王声铭), et al. Optimization and Update of EAST In-Vessel Components in 2011[J]. Plasma Science and Technology, 2013, 15(3): 277-281. DOI: 10.1088/1009-0630/15/3/17
  • Cited by

    Periodical cited type(14)

    1. Qi, J., Zhang, Z., Zhang, Z. et al. Plasma plume enhancement of a dual-anode vacuum arc thruster with magnetic nozzle. Plasma Sources Science and Technology, 2024, 33(7): 075015. DOI:10.1088/1361-6595/ad647c
    2. ZHANG, Z., ZHAO, Z., LIU, X. et al. Full lifetime demonstration of a Micro-Cathode-Arc thruster evolution characteristics. Chinese Journal of Aeronautics, 2024, 37(6): 38-49. DOI:10.1016/j.cja.2024.03.043
    3. Xu, Z., Xiong, K., Huang, X. Temperature Field Simulation and Intelligent Control Algorithm in the Process of Flameless Welding of Transmission Line Grounding Device. 2024. DOI:10.1109/AIARS63200.2024.00135
    4. Liu, X.-Y., Zhao, Z.-J., Zhang, Z. et al. Experimental Study on Conductive Film State of Micro-Cathode Arc Thruster | [微阴极电弧推力器导电薄膜状态实验研究]. Tuijin Jishu/Journal of Propulsion Technology, 2023, 44(7): 2210060. DOI:10.13675/j.cnki.tjjs.2210060
    5. Liu, Y.-X., Geng, J.-Y., Zhang, X. et al. Experimental Study on Discharge Characteristics of Plate Electrode in Micro-Cathode Arc Thruster | [微阴极电弧推力器平板电极放电特性实验研究]. Tuijin Jishu/Journal of Propulsion Technology, 2023, 44(7): 2211074. DOI:10.13675/j.cnki.tjjs.2211074
    6. Tang, H.-B., Chen, Z.-Y., Wang, Y.-B. et al. Research Review for Magnetic Nozzle of Electric Propulsion | [电推进磁喷管研究综述]. Tuijin Jishu/Journal of Propulsion Technology, 2023, 44(7): 2210071. DOI:10.13675/j.cnki.tjjs.2210071
    7. Ji, T., Wei, L., Wang, L. et al. Investigation of the physical process inside the crater during the ablation of the cathode material of a micro-cathode arc thruster. Journal of Physics D: Applied Physics, 2023, 56(24): 245201. DOI:10.1088/1361-6463/acc8e3
    8. Yan, H., Geng, J.-Y., Chen, M.-Y. et al. Performance Investigation of High-Total-Impulse Micro-Cathode Arc Thruster | [高总冲微阴极电弧推力器实验研究]. Tuijin Jishu/Journal of Propulsion Technology, 2023, 44(6): 2208104. DOI:10.13675/j.cnki.tjjs.2208104
    9. Yang, Z., Guo, H., Bai, J. et al. Experimental study of a neutralizer-free gridded ion thruster using radio-frequency self-bias effect. Plasma Science and Technology, 2023, 25(4): 045506. DOI:10.1088/2058-6272/aca13f
    10. Gao, Y., Wang, W., Li, Y. et al. The effect of anode axial position on the performance of a miniaturized cylindrical Hall thruster with a cusp-type magnetic field. Plasma Science and Technology, 2022, 24(7): 074002. DOI:10.1088/2058-6272/ac4d1c
    11. Huang, W.-D., Geng, J.-Y., Yan, H. et al. Particle-in-cell simulation of vacuum arc breakdown process of tip-to-plate electrode configuration. Journal of Applied Physics, 2022, 131(10): 103303. DOI:10.1063/5.0079589
    12. Hu, Y., Huang, Z., Cao, Y. et al. Kinetic insights into thrust generation and electron transport in a magnetic nozzle. Plasma Sources Science and Technology, 2021, 30(7): 075006. DOI:10.1088/1361-6595/ac0a48
    13. Wang, Z.-X., Cao, Z.-Y., Li, R. et al. Three-dimensional hybrid simulation of single cathode spot vacuum arc plasma jet under axial magnetic field | [纵磁作用下真空电弧单阴极斑点等离子体射流三维混合模拟]. Wuli Xuebao/Acta Physica Sinica, 2021, 70(5): 055201. DOI:10.7498/aps.70.20201701
    14. ZHANG, W., LIU, W., TIAN, J. et al. Study of the influence of discharge loop parameters on anode side on generation characteristics of metal plasma jet in a pulsed vacuum discharge. Plasma Science and Technology, 2021, 23(6): 064004. DOI:10.1088/2058-6272/abeb5c

    Other cited types(0)

Catalog

    Article views (94) PDF downloads (192) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return