Advanced Search+
Lingfeng LU (卢凌峰), Ying LIU (刘莹), Huizong DUAN (段会宗), Yuanze JIANG (姜元泽), Hsien-Chi YEH (叶贤基). Numerical simulations of the wavefront distortion of inter-spacecraft laser beams caused by solar wind and magnetospheric plasmas[J]. Plasma Science and Technology, 2020, 22(11): 115301. DOI: 10.1088/2058-6272/abab69
Citation: Lingfeng LU (卢凌峰), Ying LIU (刘莹), Huizong DUAN (段会宗), Yuanze JIANG (姜元泽), Hsien-Chi YEH (叶贤基). Numerical simulations of the wavefront distortion of inter-spacecraft laser beams caused by solar wind and magnetospheric plasmas[J]. Plasma Science and Technology, 2020, 22(11): 115301. DOI: 10.1088/2058-6272/abab69

Numerical simulations of the wavefront distortion of inter-spacecraft laser beams caused by solar wind and magnetospheric plasmas

Funds: This work was supported by the China Postdoctoral Science Foundation (No. 2018M643286) and the postdoctoral funding project of the Pearl River Talent Plan.
More Information
  • Received Date: April 16, 2020
  • Revised Date: July 29, 2020
  • Accepted Date: July 30, 2020
  • Plasma turbulence may lead to additional wavefront distortion of inter-spacecraft laser beams during the operation of spaceborne gravitational wave (GW) observatories, e.g. TianQin. By making use of the Space Weather Modelling Framework (SWMF) model and realistic orbit data for the TianQin constellation, the characteristic parameters of the plasma turbulence present at the TianQin orbit are obtained. As a first step, this work is based on the assumptions that the cold plasma approximation is valid and that the effects of the electromagnetic field induced by charge separation within the Debye length on the laser’s wavefront can be ignored. An atmospheric turbulence–laser interaction model is then applied to analyze the effects of the plasma turbulence on the inter-spacecraft laser’s wavefront. The preliminary results show that the wavefront distortion caused by the plasma turbulence is 10–9 rad, which is significantly less than the designated error budget, i.e. 10–6 rad, and thus will not affect the laser interferometry.
  • [1]
    Abbott B P et al 2016 Phys. Rev. Lett. 116 061102
    [2]
    Vitale S 2014 Gen. Relativ. Gravit. 46 1730
    [3]
    Hu W R and Wu Y L 2017 Nat. Sci. Rev. 4 685
    [4]
    Luo J et al 2016 Class. Quantum Grav. 33 035010
    [5]
    Harry G M 2010 Class. Quantum Grav. 27 084006
    [6]
    Samson J C 1991 Geomagnetic pulsations and plasma waves in the Earth’s magnetosphere ed J A Jacobs Geomagnetism (London: Academic) p 481
    [7]
    Bender P L 2005 Class. Quantum Grav. 22 S339
    [8]
    Yeh K C and Liu C H 1982 Proc. IEEE 70 324
    [9]
    Andrews L C and Phillips R L 2005 Laser Beam Propagation Through Random Media 2nd edn (Bellingham: SPIE Press)p 135
    [10]
    Rao R Z 2005 Light Propagation in the Turbulent Atmosphere (Hefei: Anhui Science and Technology Press) pp 1–347 (in Chinese)
    [11]
    Andrews L C, Phillips R L and Hopen C Y 2001 Laser Beam Scintillation with Applications (Bellingham: SPIE Press) p 2
    [12]
    Young C Y, Masino A J and Thomas F 2003 Proc SPIE 4976 141
    [13]
    Thomas F E and Young C Y 2005 Proc SPIE 5793 237
    [14]
    Schmidt J D 2010 Numerical S imulation of Optical Wave Propagation (Bellingham: SPIE) pp 1–195
    [15]
    Brambilla M 1998 Kinetic Theory of Plasma WavesHomogeneous Plasmas (Oxford: Clarendon)
    [16]
    Fitzpatrick R 2014 Plasma Physics: An Introduction (Boca Raton, FL: CRC Press)
    [17]
    Stix T H 1992 Waves in Plasmas (Berlin: Springer Science & Business Media) (https://springer.com/gp/book/9780883188590)
    [18]
    Horbury T S, Wicks R T and Chen C H K 2012 Space Sci. Rev.172 325
    [19]
    Verscharen D, Klein K G and Maruca B A 2019 Living Rev.Sol. Phys. 16 5
    [20]
    Qian X M 2008 Numerical simulation of laser propagating through long path in inhomogeneous turbulent atmosphere PhD Thesis Hefei Institute of Physical Science, Chinese Academy of Sciences (in Chinese)
    [21]
    Andrews L C 1992 J. Mod. Opt. 39 1849
    [22]
    Lutom irski R F and Yura H T 1971 J. Opt. Soc. Am. 61 482
    [23]
    Qian X M, Zhu W Y and Huang Y B 2008 Acta Photonica Sinica. 37 1986 (in Chinese)
    [24]
    Tóth G et al 2005 J. Geophys. Res. Space Phys. 110 A12226
    [25]
    General Mission Analysis Tool (GMAT) v.R2016a. (http://software.nasa.gov/software/GSC-17177-1)
    [26]
    Ye B B et al 2019 Int. J. Mod. Phys. D 28 1950121
    [27]
    Community Coordinate Modeling Center (CCMC) (https://ccmc.gsfc.nasa.gov/)
    [28]
    Yeh H C et al 2011 Rev. Sci. Instrum. 82 044501
    [29]
    Welling D T and Ridley A J 2010 Space Wea. 8 S03002
  • Related Articles

    [1]Zhipeng CHEN, Lizhi ZHU, Xin XU, Wei ZHENG, Ming ZHANG, Li GAO, Minghui XIA, Jie YANG, Mingchong ZHU, Zhigang HAO, Shaodong JIAO, Zhifeng CHENG, Zhoujun YANG, Xiaoqing ZHANG, Zhongyong CHEN, Nengchao WANG, Yonghua DING, Ge ZHUANG, Kenneth W GENTLE, Yunfeng LIANG, Yuan PAN, the J-TEXT Team. Realization of divertor configuration discharge in J-TEXT tokamak[J]. Plasma Science and Technology, 2022, 24(12): 124008. DOI: 10.1088/2058-6272/aca0dc
    [2]J COSFELD, P DREWS, B BLACKWELL, M JAKUBOWSKI, H NIEMANN, D ZHANG, Y FENG, the Wendelstein -X Team. Numerical estimate of multi-species ion sound speed of Langmuir probe interpretations in the edge plasmas of Wendelstein 7-X[J]. Plasma Science and Technology, 2020, 22(8): 85102-085102. DOI: 10.1088/2058-6272/ab8974
    [3]Kristel GHOOS, Heinke FRERICHS, Wouter DEKEYSER, Giovanni SAMAEY, Martine BAELMANS. Numerical accuracy and convergence with EMC3-EIRENE[J]. Plasma Science and Technology, 2020, 22(5): 54001-054001. DOI: 10.1088/2058-6272/ab5866
    [4]P DREWS, H NIEMANN, J COSFELD, Y GAO, J GEIGER, O GRULKE, M HENKEL, D HÖSCHEN, K HOLLFELD, C KILLER, AKRÄMER-FLECKEN, Y LIANG, S LIU, D NICOLAI, O NEUBAUER, M RACK, B SCHWEER, G SATHEESWARAN, L RUDISCHHAUSER, N SANDRI, N WANG, the W-X Team. Magnetic configuration effects on the edge heat flux in the limiter plasma on W7-X measured using the infrared camera and the combined probe[J]. Plasma Science and Technology, 2018, 20(5): 54003-054003. DOI: 10.1088/2058-6272/aaa968
    [5]Pengfei ZHANG (张鹏飞), Ling ZHANG (张凌), Zhenwei WU (吴振伟), Zong XU (许棕), Wei GAO (高伟), Liang WANG (王亮), Qingquan YANG (杨清泉), Jichan XU (许吉禅), Jianbin LIU (刘建斌), Hao QU (屈浩), Yong LIU (刘永), Juan HUANG (黄娟), Chengrui WU (吴成瑞), Yumei HOU (侯玉梅), Zhao JIN (金钊), J D ELDER, Houyang GUO (郭后扬). OEDGE modeling of plasma contamination efficiency of Ar puffing from different divertor locations in EAST[J]. Plasma Science and Technology, 2018, 20(4): 45104-045104. DOI: 10.1088/2058-6272/aaa7e8
    [6]Guozhong DENG (邓国忠), Xiaoju LIU (刘晓菊), Liang WANG (王亮), Shaocheng LIU (刘少承), Jichan XU (许吉禅), Wei FENG (冯威), Jianbin LIU (刘建斌), Huan LIU (刘欢), Xiang GAO (高翔). Modeling of divertor power footprint widths on EAST by SOLPS5.0/B2.5-Eirene[J]. Plasma Science and Technology, 2017, 19(4): 45101-045101. DOI: 10.1088/2058-6272/aa5802
    [7]WANG Dongsheng (王东升), GUO Houyang (郭后扬), SHANG Yizi (尚毅梓), GAN Kaifu (甘开福), WANG Huiqian (汪惠乾), CHEN Yingjie (陈颖杰), et al. Radiative Divertor Plasma Behavior in L- and H-Mode Discharges with Argon Injection in EAST[J]. Plasma Science and Technology, 2013, 15(7): 614-618. DOI: 10.1088/1009-0630/15/7/02
    [8]LI Chengyue (李承跃). Numerical Simulation of the Neutralized α Particle Transport near the Divertor Plate Region[J]. Plasma Science and Technology, 2012, 14(10): 886-890. DOI: 10.1088/1009-0630/14/10/06
    [9]ZHANG Ling, XU Guosheng, DING Siye, GAO Wei, WU Zhenwei, CHEN Yingjie, HUANG Juan. Estimation of Neutral Density in Edge Plasma with Double Null Configuration in EAST[J]. Plasma Science and Technology, 2011, 13(4): 431-434.
    [10]T. TAKIZUKA. Development of the PARASOL Code and Full Particle Simulation of Tokamak Plasma with an Open-Field SOL-Divertor Region Using PARASOL[J]. Plasma Science and Technology, 2011, 13(3): 316-325.
  • Cited by

    Periodical cited type(6)

    1. Xie, W., Liang, Y., Jiang, Z. et al. Application of three-dimensional MHD equilibrium calculation coupled with plasma response to island divertor experiments on J-TEXT. Plasma Science and Technology, 2024, 26(11): 115104. DOI:10.1088/2058-6272/ad70e1
    2. Xu, S., Liang, Y., Knieps, A. et al. Modeling of plasma beta effects on the island divertor transport in the standard configuration of W7-X. Nuclear Fusion, 2023, 63(6): 066005. DOI:10.1088/1741-4326/acc7b8
    3. Wang, J., Chen, Z., Cheng, Z. et al. Impurity emissivity tomographic reconstruction by CCD imaging system on J-TEXT. 2023. DOI:10.1109/CIYCEE59789.2023.10401533
    4. Liang, Y., Chen, Z., Wang, N. et al. Towards advanced divertor configurations on the J-TEXT tokamak. Plasma Science and Technology, 2022, 24(12): 124021. DOI:10.1088/2058-6272/acaa8d
    5. Li, B., Wang, T., Nie, L. et al. Reconstruction of the emissivity and flow for Doppler coherence imaging spectroscopy (CIS) on J-TEXT. Fusion Engineering and Design, 2022. DOI:10.1016/j.fusengdes.2022.113271
    6. Li, S., Wang, N., Ding, Y. et al. Impact of the non-axisymmetric SOL current driven by a biased electrode on the diverted J-TEXT plasma. Plasma Physics and Controlled Fusion, 2022, 64(7): 075005. DOI:10.1088/1361-6587/ac72bf

    Other cited types(0)

Catalog

    Article views (253) PDF downloads (250) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return