Advanced Search+
Shuqun WU (吴淑群), Yuxiu CHEN (陈玉秀), Minge LIU (刘敏格), Lu YANG (杨璐), Chaohai ZHANG (张潮海), Shaobin LIU (刘少斌). Numerical study on the modulation of THz wave propagation by collisional microplasma photonic crystal[J]. Plasma Science and Technology, 2020, 22(11): 115402. DOI: 10.1088/2058-6272/abb077
Citation: Shuqun WU (吴淑群), Yuxiu CHEN (陈玉秀), Minge LIU (刘敏格), Lu YANG (杨璐), Chaohai ZHANG (张潮海), Shaobin LIU (刘少斌). Numerical study on the modulation of THz wave propagation by collisional microplasma photonic crystal[J]. Plasma Science and Technology, 2020, 22(11): 115402. DOI: 10.1088/2058-6272/abb077

Numerical study on the modulation of THz wave propagation by collisional microplasma photonic crystal

Funds: This work was supported by National Natural Science Foundation of China (No. 51977110).
More Information
  • Received Date: June 03, 2020
  • Revised Date: August 12, 2020
  • Accepted Date: August 17, 2020
  • In order to demonstrate the modulation of terahertz wave propagation in atmospheric pressure microplasmas, in this work, the band structure and the transmission characteristics of a onedimensional collisional microplasma photonic crystal are investigated, using the transfer matrix method. For a lattice constant of 150 μm and a plasma width of 100 μm, three stopbands of microplasma photonic crystal are observed, in a frequency range of 0.1–5 THz. Firstly, an increase in gas pressure leads to a decrease in the central frequency of the stopband. When the gas pressure increases from 50.5 kPa to 202 kPa, the transmission coefficient of the THz wave first increases and then decreases at high frequency, where the wave frequency is much greater than both the plasma frequency and the collision frequency. Secondly, it is interesting to find that the central frequency and the bandwidth of the first THz stopband remain almost unchanged for electron densities of less than 1015 cm–3, increasing significantly when the electron density increases up to 1016 cm–3. A central frequency shift of 110 GHz, and a bandgap broadening of 200 GHz in the first stopband are observed. In addition, an atmospheric pressure microplasma with the electron density of 1 × 1015–6 × 1015 cm–3 is recommended for the modulation of THz wave propagation by plasma photonic crystals.
  • [1]
    Tonouchi M 2007 Nat. Photonics 1 97
    [2]
    Siegel P H 2004 IEEE Trans. Microw. Theory Tech. 52 2438
    [3]
    Siegel P H 2002 IEEE Trans. Microw. Theory Tech. 50 910
    [4]
    Shi S C et al 2017 Nat. Astron. 1 0001
    [5]
    Han H et al 2002 Appl. Phys. Lett. 80 2634
    [6]
    Russell P 2003 Science 299 358
    [7]
    Sakai O et al 2005 Plasma Phys. Control. Fusion 47 B617
    [8]
    Qi L M et al 2015 Plasma Sci. Technol. 17 4
    [9]
    Sakai O, Sakaguchi T, Tachibana K et al 2007 J. Appl. Phys.101 073304
    [10]
    Li J S, He J L and Hong Z 2007 Appl. Opt. 46 5034
    [11]
    Xu L L et al 2017 IEEE Photonics Technol. Lett. 29 869
    [12]
    Li S P et al 2015 IEEE Photonics Technol. Lett. 27 752
    [13]
    Xue Q W et al 2018 Plasma Sci. Technol. 20 035504
    [14]
    Zhang H F et al 2013 Phys. Plasmas 20 042110
    [15]
    Guo B, Xie M Q and Peng L 2012 Phys. Plasmas 19 072111
    [16]
    Zhang L and Ouyang J T 2014 Phys. Plasmas 21 103514
    [17]
    Fan W L, Zhang X C and Dong L F 2010 Phys. Plasmas 17 113501
    [18]
    Wang B and Cappelli M A 2015 Appl. Phys. Lett. 107 171107
    [19]
    Askari N, Mirzaie R and Eslami E 2015 Phys. Plasmas 22 112117
    [20]
    PanneerChelvam P, Raja L L and Upadhyay R R 2016 J. Phys.D: Appl. Phys. 49 345501
    [21]
    Yang H J, Park S-J and Eden J G 2017 J. Phys. D: Appl. Phys.50 43LT05
    [22]
    Sun P P et al Student excellence award finalist: three dimensional microplasma/metal/dieletric photonic crystal:dynamic bandstop filters 71st Annual Gaseous Electronics Conf. (Portland, Oregon)
    [23]
    Tian Y et al 2014 Phys. Plasmas 21 023301
    [24]
    Drude P 1900 Ann. Phys. Berlin 306 566
    [25]
    Penning F M 1926 Nature 118 301
    [26]
    Ginzburg V L 1970 The Propagation of Electromagnetic Waves in Plasmas (New York: Pengamon)
    [27]
    Katsidis C C and Siapkas D I 2002 Appl. Opt. 41 3978
    [28]
    Wu S Q et al 2019 Plasma Process. Polym. 16 e1800176
    [29]
    Wu S et al 2016 Phys. Plasmas 23 103506
    [30]
    Zhang C et al 2014 Appl. Phys. Lett. 105 044102
    [31]
    Wu S Q et al 2016 IEEE Trans. Plasma Sci. 44 2632
    [32]
    Johri G et al 2002 J. Phys. 58 3
    [33]
    Xi Y B and Liu Y 2012 Plasma Sci. Technol. 14 5
    [34]
    Sakai O and Tachibana K 2012 Plasma Sources Sci. Technol.21 013001
    [35]
    Laroussi M and Roth J R 1993 IEEE Trans. Plasma Sci.21 366
    [36]
    Wu S Q et al 2018 Plasma Sci. Technol. 20 105402
  • Related Articles

    [1]Zhipeng CHEN, Lizhi ZHU, Xin XU, Wei ZHENG, Ming ZHANG, Li GAO, Minghui XIA, Jie YANG, Mingchong ZHU, Zhigang HAO, Shaodong JIAO, Zhifeng CHENG, Zhoujun YANG, Xiaoqing ZHANG, Zhongyong CHEN, Nengchao WANG, Yonghua DING, Ge ZHUANG, Kenneth W GENTLE, Yunfeng LIANG, Yuan PAN, the J-TEXT Team. Realization of divertor configuration discharge in J-TEXT tokamak[J]. Plasma Science and Technology, 2022, 24(12): 124008. DOI: 10.1088/2058-6272/aca0dc
    [2]J COSFELD, P DREWS, B BLACKWELL, M JAKUBOWSKI, H NIEMANN, D ZHANG, Y FENG, the Wendelstein -X Team. Numerical estimate of multi-species ion sound speed of Langmuir probe interpretations in the edge plasmas of Wendelstein 7-X[J]. Plasma Science and Technology, 2020, 22(8): 85102-085102. DOI: 10.1088/2058-6272/ab8974
    [3]Kristel GHOOS, Heinke FRERICHS, Wouter DEKEYSER, Giovanni SAMAEY, Martine BAELMANS. Numerical accuracy and convergence with EMC3-EIRENE[J]. Plasma Science and Technology, 2020, 22(5): 54001-054001. DOI: 10.1088/2058-6272/ab5866
    [4]P DREWS, H NIEMANN, J COSFELD, Y GAO, J GEIGER, O GRULKE, M HENKEL, D HÖSCHEN, K HOLLFELD, C KILLER, AKRÄMER-FLECKEN, Y LIANG, S LIU, D NICOLAI, O NEUBAUER, M RACK, B SCHWEER, G SATHEESWARAN, L RUDISCHHAUSER, N SANDRI, N WANG, the W-X Team. Magnetic configuration effects on the edge heat flux in the limiter plasma on W7-X measured using the infrared camera and the combined probe[J]. Plasma Science and Technology, 2018, 20(5): 54003-054003. DOI: 10.1088/2058-6272/aaa968
    [5]Pengfei ZHANG (张鹏飞), Ling ZHANG (张凌), Zhenwei WU (吴振伟), Zong XU (许棕), Wei GAO (高伟), Liang WANG (王亮), Qingquan YANG (杨清泉), Jichan XU (许吉禅), Jianbin LIU (刘建斌), Hao QU (屈浩), Yong LIU (刘永), Juan HUANG (黄娟), Chengrui WU (吴成瑞), Yumei HOU (侯玉梅), Zhao JIN (金钊), J D ELDER, Houyang GUO (郭后扬). OEDGE modeling of plasma contamination efficiency of Ar puffing from different divertor locations in EAST[J]. Plasma Science and Technology, 2018, 20(4): 45104-045104. DOI: 10.1088/2058-6272/aaa7e8
    [6]Guozhong DENG (邓国忠), Xiaoju LIU (刘晓菊), Liang WANG (王亮), Shaocheng LIU (刘少承), Jichan XU (许吉禅), Wei FENG (冯威), Jianbin LIU (刘建斌), Huan LIU (刘欢), Xiang GAO (高翔). Modeling of divertor power footprint widths on EAST by SOLPS5.0/B2.5-Eirene[J]. Plasma Science and Technology, 2017, 19(4): 45101-045101. DOI: 10.1088/2058-6272/aa5802
    [7]WANG Dongsheng (王东升), GUO Houyang (郭后扬), SHANG Yizi (尚毅梓), GAN Kaifu (甘开福), WANG Huiqian (汪惠乾), CHEN Yingjie (陈颖杰), et al. Radiative Divertor Plasma Behavior in L- and H-Mode Discharges with Argon Injection in EAST[J]. Plasma Science and Technology, 2013, 15(7): 614-618. DOI: 10.1088/1009-0630/15/7/02
    [8]LI Chengyue (李承跃). Numerical Simulation of the Neutralized α Particle Transport near the Divertor Plate Region[J]. Plasma Science and Technology, 2012, 14(10): 886-890. DOI: 10.1088/1009-0630/14/10/06
    [9]ZHANG Ling, XU Guosheng, DING Siye, GAO Wei, WU Zhenwei, CHEN Yingjie, HUANG Juan. Estimation of Neutral Density in Edge Plasma with Double Null Configuration in EAST[J]. Plasma Science and Technology, 2011, 13(4): 431-434.
    [10]T. TAKIZUKA. Development of the PARASOL Code and Full Particle Simulation of Tokamak Plasma with an Open-Field SOL-Divertor Region Using PARASOL[J]. Plasma Science and Technology, 2011, 13(3): 316-325.
  • Cited by

    Periodical cited type(6)

    1. Xie, W., Liang, Y., Jiang, Z. et al. Application of three-dimensional MHD equilibrium calculation coupled with plasma response to island divertor experiments on J-TEXT. Plasma Science and Technology, 2024, 26(11): 115104. DOI:10.1088/2058-6272/ad70e1
    2. Xu, S., Liang, Y., Knieps, A. et al. Modeling of plasma beta effects on the island divertor transport in the standard configuration of W7-X. Nuclear Fusion, 2023, 63(6): 066005. DOI:10.1088/1741-4326/acc7b8
    3. Wang, J., Chen, Z., Cheng, Z. et al. Impurity emissivity tomographic reconstruction by CCD imaging system on J-TEXT. 2023. DOI:10.1109/CIYCEE59789.2023.10401533
    4. Liang, Y., Chen, Z., Wang, N. et al. Towards advanced divertor configurations on the J-TEXT tokamak. Plasma Science and Technology, 2022, 24(12): 124021. DOI:10.1088/2058-6272/acaa8d
    5. Li, B., Wang, T., Nie, L. et al. Reconstruction of the emissivity and flow for Doppler coherence imaging spectroscopy (CIS) on J-TEXT. Fusion Engineering and Design, 2022. DOI:10.1016/j.fusengdes.2022.113271
    6. Li, S., Wang, N., Ding, Y. et al. Impact of the non-axisymmetric SOL current driven by a biased electrode on the diverted J-TEXT plasma. Plasma Physics and Controlled Fusion, 2022, 64(7): 075005. DOI:10.1088/1361-6587/ac72bf

    Other cited types(0)

Catalog

    Article views (140) PDF downloads (230) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return