Advanced Search+
Yueqiang LI (李跃强), Chao GAO (高超), Bin WU (武斌), Yushuai WANG (王玉帅), Haibo ZHENG (郑海波), Ming XUE (薛明), Yuling WANG (王玉玲). Turbulent boundary layer control with a spanwise array of DBD plasma actuators[J]. Plasma Science and Technology, 2021, 23(2): 25501-025501. DOI: 10.1088/2058-6272/abce0d
Citation: Yueqiang LI (李跃强), Chao GAO (高超), Bin WU (武斌), Yushuai WANG (王玉帅), Haibo ZHENG (郑海波), Ming XUE (薛明), Yuling WANG (王玉玲). Turbulent boundary layer control with a spanwise array of DBD plasma actuators[J]. Plasma Science and Technology, 2021, 23(2): 25501-025501. DOI: 10.1088/2058-6272/abce0d

Turbulent boundary layer control with a spanwise array of DBD plasma actuators

Funds: The authors would like to acknowledge the financial support from the European Commission through the Research and Innovation action DRAGY (Drag Reduction via Turbulent Boundary Layer Flow Control), under Grant No. 690623, and the Ministry of Industry and Information Technology (MIIT) of the Chinese government, and support received from National Natural Science Foundation of China (No. 11572256).
More Information
  • Received Date: July 29, 2020
  • Revised Date: November 23, 2020
  • Accepted Date: November 24, 2020
  • The turbulent boundary layer control on NACA 0012 airfoil with Mach number ranging from 0.3 to 0.5 by a spanwise array of dielectric barrier discharge (DBD) plasma actuators by hot-film sensor technology is investigated. Due to temperature change mainly caused through heat produced along with plasma will lead to measurement error of shear stress measured by hot-film sensor, the correction method that takes account of the change measured by another sensor is used and works well. In order to achieve the value of shear stress change, we combine computational fluid dynamics computation with experiment to calibrate the hot-film sensor. To test the stability of the hot-film sensor, seven repeated measurements of shear stress at Ma = 0.3 are conducted and show that confidence interval of hot-film sensor measurement is from −0.18 to 0.18 Pa and the root mean square is 0.11 Pa giving a relative error 0.5% over all Mach numbers in this experiment. The research on the turbulent boundary layer control with DBD plasma actuators demonstrates that the control makes shear stress increase by about 6% over the three Mach numbers, which is thought to be reliable through comparing it with the relative error 0.5%, and the value is hardly affected by burst frequency and excitation voltage.
  • [1]
    Pinheiro M J 2006 Plasma Process. Polym. 3 135
    [2]
    Dong B et al 2008 J. Phys. D: Appl. Phys. 41 155201
    [3]
    Xue M et al 2020 AIAA J. 58 2428
    [4]
    Pouryoussefi S G et al 2016 Appl. Therm. Eng. 100 1334
    [5]
    Meng X S et al 2019 Phys. Fluids 31 037103
    [6]
    Roth J R, Sherman D M and Wilkinson S P 1998 Boundary layer flow control with a one atmosphere uniform glow discharge surface plasma Proc. 36th AIAA Aerospace Sciences Meeting and Exhibit (Reno, Nevada, USA) (Reston, VA: AIAA)
    [7]
    Roth J R, Sherman D M and Wilkinson S P 2000 AIAA J.38 1166
    [8]
    Jukes T N et al 2006 Turbulent boundary-layer control for drag reduction using surface plasma Proc. 2nd AIAA Flow Control Conf. (Portland, Oregon, USA) (Reston, VA: AIAA)
    [9]
    Corke T C and Thomas F O 2018 AIAA J. 56 3835
    [10]
    Wu B et al 2018 Plasma Sci. Technol. 21 045501
    [11]
    Kline S J et al 1967 J. Fluid Mech. 30 741
    [12]
    Clar J A and Markland E 1971 J. Hydraul. Div. 97 1653
    [13]
    Choi K S, DeBisschop J R and Clayton B R 1998 AIAA J. 36 1157
    [14]
    Smits A J, McKeon B J and Marusic I 2011 Ann. Rev. Fluid Mech. 43 353
    [15]
    Marusic I, Mathis R and Hutchins N 2010 Int. J. Heat Fluid Flow 31 418
    [16]
    Jiménez J and Pinelli A 1999 J. Fluid Mech. 389 335
    [17]
    Mathis R, Hutchins N and Marusic I 2009 J. Fluid Mech.628 311
    [18]
    Naughton J W and Sheplak M 2002 Prog. Aerosp. Sci. 38 515
    [19]
    Yan Y C et al 2019 Flow Meas. Instrum. 69 101591
    [20]
    Huang X P 2016 The calibration model of micro thermal sensor for wall shear stress measurement in the air MEng Thesis Northwestern Polytechnical University (in Chinese)
  • Related Articles

    [1]Yueqiang LI, Bin WU, Chao GAO, Haibo ZHENG, Yushuai WANG, Rihua YAN. Turbulent boundary layer control with DBD plasma actuators[J]. Plasma Science and Technology, 2023, 25(4): 045508. DOI: 10.1088/2058-6272/aca503
    [2]Borui ZHENG, Yuanzhong JIN, Minghao YU, Yueqiang LI, Bin WU, Quanlong CHEN. Turbulent drag reduction by spanwise slot blowing pulsed plasma actuation[J]. Plasma Science and Technology, 2022, 24(11): 114003. DOI: 10.1088/2058-6272/ac72e2
    [3]Hesen YANG, Hua LIANG, Shanguang GUO, Yanhao LUO, Mengxiao TANG, Chuanbiao ZHANG, Yun WU, Yinghong LI. Experimental study on surface arc plasma actuation-based hypersonic boundary layer transition flow control[J]. Plasma Science and Technology, 2022, 24(9): 095503. DOI: 10.1088/2058-6272/ac6d42
    [4]Bin WU (武斌), Chao GAO (高超), Feng LIU (刘峰), Ming XUE (薛明), Yushuai WANG (王玉帅), Borui ZHENG (郑博睿). Reduction of turbulent boundary layer drag through dielectric-barrier-discharge plasma actuation based on the Spalding formula[J]. Plasma Science and Technology, 2019, 21(4): 45501-045501. DOI: 10.1088/2058-6272/aaf2e2
    [5]Haiying WEI (魏海英), Hongge GUO (郭红革), Meili ZHOU (周美丽), Lei YUE (岳蕾), Qiang CHEN (陈强). DBD plasma assisted atomic layer deposition alumina barrier layer on self-degradation polylactic acid film surface[J]. Plasma Science and Technology, 2019, 21(1): 15503-015503. DOI: 10.1088/2058-6272/aae0ee
    [6]Lu MA (马璐), Xiaodong WANG (王晓东), Jian ZHU (祝健), Shun KANG (康顺). Effect of DBD plasma excitation characteristics on turbulent separation over a hump model[J]. Plasma Science and Technology, 2018, 20(10): 105503. DOI: 10.1088/2058-6272/aacdf0
    [7]Yadong HUANG (黄亚冬), Benmou ZHOU (周本谋). Active control of noise amplification in the flow over a square leading-edge flat plate utilizing DBD plasma actuator[J]. Plasma Science and Technology, 2018, 20(5): 54021-054021. DOI: 10.1088/2058-6272/aab5bb
    [8]R. KHOSHKHOO, A. JAHANGIRIAN. Numerical Simulation of Stall Flow Control Using a DBD Plasma Actuator in Pulse Mode[J]. Plasma Science and Technology, 2016, 18(9): 933-942. DOI: 10.1088/1009-0630/18/9/10
    [9]SUN Min (孙敏), YANG Bo (杨波), PENG Tianxiang (彭天祥), LEI Mingkai (雷明凯). Optimum Duty Cycle of Unsteady Plasma Aerodynamic Actuation for NACA0015 Airfoil Stall Separation Control[J]. Plasma Science and Technology, 2016, 18(6): 680-685. DOI: 10.1088/1009-0630/18/6/16
    [10]ZHENG Borui (郑博睿), GAO Chao (高超), LI Yibin (李一滨), LIU Feng (刘锋), LUO Shijun (罗时钧). Flow Control over a Conical Forebody by Periodic Pulsed Plasma Actuation[J]. Plasma Science and Technology, 2013, 15(4): 350-356. DOI: 10.1088/1009-0630/15/4/08
  • Cited by

    Periodical cited type(9)

    1. Yan, R., Wu, B., Gao, C. et al. Selective control of Poiseuille Rayleigh Bénard flows instabilities by spanwise dielectric-barrier-discharge plasma actuation. Physics of Fluids, 2023, 35(12): 127123. DOI:10.1063/5.0177318
    2. Zheng, B., Liu, Y., Yu, M. et al. Flow control performance evaluation of a tri-electrode sliding discharge plasma actuator. Chinese Physics B, 2023, 32(9): 095203. DOI:10.1088/1674-1056/acae76
    3. Zhang, Y., Gao, C., Wu, B. et al. Dynamic stall flow control with multistage dielectric-barrier discharge actuation under light stall conditions. Physics of Plasmas, 2023, 30(8): 083513. DOI:10.1063/5.0158088
    4. SU, Z., ZONG, H., LIANG, H. et al. Minimizing airfoil drag at low angles of attack with DBD-based turbulent drag reduction methods. Chinese Journal of Aeronautics, 2023, 36(4): 104-119. DOI:10.1016/j.cja.2022.11.019
    5. Xu, Z., Wu, B., Gao, C. et al. Experimental investigation of dynamic stall flow control using a microsecond-pulsed plasma actuator. Plasma Science and Technology, 2023, 25(3): 035509. DOI:10.1088/2058-6272/aca18f
    6. Su, Z., Zong, H., Liang, H. et al. Progress and outlook of plasma-based turbulent skin-friction drag reduction | [等离子体湍流摩擦减阻研究进展与展望]. Kongqi Donglixue Xuebao/Acta Aerodynamica Sinica, 2023, 41(9): 1-19. DOI:10.7638/kqdlxxb-2023.0083
    7. Xu, Z., Wu, B., Gao, C. et al. Numerical simulation of dynamic stall flow control using a multi-dielectric barrier discharge plasma actuation strategy. Physics of Plasmas, 2022, 29(10): 103503. DOI:10.1063/5.0107530
    8. Xue, M., Ni, Z., Gao, C. et al. Deflected Synthetic Jet due to Vortices Induced by a Tri-Electrode Plasma Actuator. AIAA Journal, 2022, 60(6): 3695-3706. DOI:10.2514/1.J061223
    9. Jiang, H., Li, G., Liu, H. et al. Numerical verification of the two-spike-current behavior in the initial stage of plasma formation in a pulsed surface dielectric barrier discharge. Journal of Physics D: Applied Physics, 2021, 54(34): 345201. DOI:10.1088/1361-6463/ac0705

    Other cited types(0)

Catalog

    Article views (155) PDF downloads (264) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return