Advanced Search+
Zhongzheng LI (李中正), Juanfang HAN (韩娟芳), FangpingWANG (王芳平), Zhengwu CHEN (陈正武), Wenshan DUAN (段文山). Investigation of the fast magnetosonic wave excited by the Alfvén wave phase mixing by using the Hall–MHD model in inhomogeneous plasma[J]. Plasma Science and Technology, 2021, 23(3): 35003-035003. DOI: 10.1088/2058-6272/abe10b
Citation: Zhongzheng LI (李中正), Juanfang HAN (韩娟芳), FangpingWANG (王芳平), Zhengwu CHEN (陈正武), Wenshan DUAN (段文山). Investigation of the fast magnetosonic wave excited by the Alfvén wave phase mixing by using the Hall–MHD model in inhomogeneous plasma[J]. Plasma Science and Technology, 2021, 23(3): 35003-035003. DOI: 10.1088/2058-6272/abe10b

Investigation of the fast magnetosonic wave excited by the Alfvén wave phase mixing by using the Hall–MHD model in inhomogeneous plasma

Funds: This research was supported by National Natural Science Foundation of China (Nos. 11 965 019, 42 004 131 and 61 863 032).
More Information
  • Received Date: November 16, 2020
  • Revised Date: January 27, 2021
  • Accepted Date: January 27, 2021
  • The inhomogeneity is introduced by a nonzero density gradient which separates the plasma into two different regions where plasma density are constant. The Alfvén waves, the phase mixing and the fast magnetosonic wave are excited by the boundary condition in inhomogeneous magnetized plasma. By using the Hall–magnetohydrodynamics (MHD) model, it is found that there are Alfvén waves in the homogeneous regions, while the phase mixing appears in the inhomogeneous region. The interesting result is that a fast magnetosonic wave is excited in a different direction which has a nonzero angle between the wave propagation direction and the direction of the background magnetic field. The dependence of the propagation direction of the excited fast magnetosonic wave and its strength of the magnetic field on the plasma parameters are given numerically. The results show that increasing both the driving frequency and the ratio of magnetic pressure to thermal pressure will increase the acceleration of the electrons. The electron acceleration also depends on the inhomogeneity parameters.
  • [1]
    Heyvaerts J and Priest E R 1983 Astron. Astrophys. 117 220
    [2]
    Malara F et al 1992 Astrophys. J. 396 297
    [3]
    Malara F, Primavera L and Veltri P 1996 Astrophys. J. 459 347
    [4]
    Nakariakov V M, Roberts B and Murawski K 1997 Sol. Phys. 175 93
    [5]
    Nakariakov V M, Roberts B and Murawski K 1998 Astron. Astrophys. 332 795
    [6]
    DeMoortel I, Hood A W and Arber T D 2000 Astron. Astrophys. 354 334–48
    [7]
    Botha G J J et al 2000 Astron. Astrophys. 363 1186
    [8]
    Tsiklauri D, Arber T D and Nakariakov V M 2001 Astron. Astrophys. 379 1098
    [9]
    Hood A W, Brooks S J and Wright A N 2002 Proc. Roy. Soc. Lond. A 458 2307
    [10]
    Tsiklauri D, Nakariakov V M and Arber T D 2002 Astron. Astrophys. 395 285
    [11]
    Tsiklauri D, Nakariakov V M and Rowlands G 2003 Astron. Astrophys. 400 1051
    [12]
    Pascoe D J, Wright A N and De Moortel I 2010 Phys. Scr. 711 990
    [13]
    McLaughlin J A, De Moortel I and Hood A W 2011 Astron. Astrophys. 527 A149
    [14]
    Zheng J G, Chen Y H and Yu M Y 2016 Phys. Scr. 91 015601
    [15]
    Zheng J G, Chen Y H and Yu M Y 2016 Phys. Scr. 91 035601
    [16]
    Pagano P and De Moortel I 2017 Astron. Astrophys. 601 A107
    [17]
    Shoda M, Yokoyama T and Suzuki T K 2018 Astrophys. J. 190 853
    [18]
    Shoda M, Yokoyama T and Suzuki T K 2018 Astrophys. J. 17 860
    [19]
    Génot V, Louarn P and Mottez F 2004 Ann. Geophys. 22 2081
    [20]
    Tsiklauri D, Sakai J-I and Saito S 2005 Astron. Astrophys. 435 1105
    [21]
    Tsiklauri D and Haruki T 2008 Phys. Plasmas 15 112902
    [22]
    Tsiklauri D 2011 Phys. Plasmas 18 092903
    [23]
    Tsiklauri D 2012 Phys. Plasmas 19 082903
    [24]
    Threlfall J, McClements K G and De Moortel I 2011 Phys. Scr. 525 A155
    [25]
    Vásconez C L et al 2015 Astron. Astrophys. 815 7
    [26]
    Pucci F et al 2016 J. Geophys. Res. Space Physics 121 1024
    [27]
    Pezzi O et al 2017 Astrophys. J. 166 834
    [28]
    Pezzi O et al 2017 J. Plasma Phys. 83 905830105
    [29]
    Pezzi O et al 2017 Phys. Rev. E 96 02320
    [30]
    Moffatt H K 1978 Field Generation in Electrically Conducting Fluids (Cambridge: Cambridge University Press) (https:// doi.org/10.1002/zamm.19790591150)
    [31]
    Parker E N 1979 Cosmical Magnetic Fields: Their Origin and Their Activity (Oxford: Oxford University Press)
    [32]
    Shaikh D and Shukla P K 2009 Phys. Rev. Lett. 102 045004
    [33]
    Dedner A et al 2002 J. Comput. Phys. 175 645
    [34]
    Waagan K 2009 J. Comput. Phys. 228 8609
    [35]
    Loverich J et al 2011 XLII AIAA Plasmadynamics and Lasers Conf. 2011 4012
    [36]
    Mio K et al 1976 Phys. Soc. Jpn. 41 1
  • Related Articles

    [1]Jiansheng YAO (姚建生), Yingkui ZHAO (赵英奎), Difa YE (叶地发), Yi LI (李毅), Lihui CHAI (柴立晖), Jicheng SUN (孙继承). A simulation study of protons heated by left/right-handed Alfvén waves generated by electromagnetic proton–proton instability[J]. Plasma Science and Technology, 2021, 23(12): 125301. DOI: 10.1088/2058-6272/ac11b0
    [2]Imran Ali KHAN, G MURTAZA. Effect of kappa distribution on the damping rate of the obliquely propagating magnetosonic mode[J]. Plasma Science and Technology, 2018, 20(3): 35302-035302. DOI: 10.1088/2058-6272/aaa457
    [3]Suyun ZHOU (周素云), Hui CHEN (陈辉), Yanfang LI (李艳芳). Breaking of a Langmuir wave in cold electron–positron–ion plasmas[J]. Plasma Science and Technology, 2018, 20(1): 14008-014008. DOI: 10.1088/2058-6272/aa8cc0
    [4]Lingjie LI (李灵杰), Zhiwei MA (马志为), Licheng WANG (王理程). Generation of Alfvén wave energy during magnetic reconnection in Hall MHD[J]. Plasma Science and Technology, 2017, 19(10): 105001. DOI: 10.1088/2058-6272/aa7c17
    [5]Limin YU (虞立敏), Zhengmao SHENG (盛正卯), Xianmei ZHANG (张先梅), Erbing XUE (薛二兵). The dynamics of an ion acting on two monochromatic obliquely propagating Alfvén waves[J]. Plasma Science and Technology, 2017, 19(7): 75001-075001. DOI: 10.1088/2058-6272/aa6617
    [6]DUANMU Gang(端木刚), ZHAO Changming(赵长明), LIANG Chao(梁超), XU Yuemin(徐跃民). Numerical Simulation of Dual-Channel Communication of Column Plasma Antenna Excited by a Surface Wave[J]. Plasma Science and Technology, 2014, 16(11): 1059-1062. DOI: 10.1088/1009-0630/16/11/11
    [7]ZHANG Huasen (张桦森), LIN Zhihong (林志宏). Nonlinear Generation of Zonal Fields by the Beta-Induced Alfvén Eigenmode in Tokamak[J]. Plasma Science and Technology, 2013, 15(10): 969-973. DOI: 10.1088/1009-0630/15/10/02
    [8]LIU Hui (刘辉), TANG Ke (唐柯), GAO Ge (高格), FU Peng (傅鹏), et al.. Study of the EAST Fast Control Power Supply Based on Carrier Phase-Shift PWM[J]. Plasma Science and Technology, 2013, 15(9): 950-954. DOI: 10.1088/1009-0630/15/9/22
    [9]K. Ogawa, M. Isobe, K. Toi, F. Watanabe, D. A. Spong, A. Shimizu, M. Osakabe, D. S. Darrow, S. Ohdachi, S. Sakakibara, LHD Experiment Group. Magnetic Configuration Effects on Fast Ion Losses Induced by Fast Ion Driven Toroidal Alfvén Eigenmodes in the Large Helical Device[J]. Plasma Science and Technology, 2012, 14(4): 269-272. DOI: 10.1088/1009-0630/14/4/01
    [10]ZHU Xueguang(朱学光). Influence of the Phase of the Antenna Current Standing Wave on the Power Flux in Ion Cyclotron Heating[J]. Plasma Science and Technology, 2010, 12(5): 543-546.
  • Cited by

    Periodical cited type(8)

    1. Cui, Z., Wu, H., Wu, D. et al. Spatiotemporal Evolution of Aluminum-lithium Alloy Plasma Using a Coaxial LIBS System under Vacuum | [真空中同轴LIBS系统下铝锂合金等离子体时空演化行为研究]. Guangzi Xuebao/Acta Photonica Sinica, 2023, 52(9): 0930002. DOI:10.3788/gzxb20235209.0930002
    2. Li, C., Li, Q., Li, L. et al. Characteristic of spatiotemporal evolution of hydrogen isotope in laser-induced plasma under low-pressure environment. Spectrochimica Acta - Part B Atomic Spectroscopy, 2023. DOI:10.1016/j.sab.2023.106735
    3. Yuan, S., Wu, D., Wu, H.-C. et al. Study on the Temporal and Spatial Evolution of Optical Emission From the Laser Induced Multi-Component Plasma of Tungsten Carbide Copper Alloy in Vacuum | [真空下激光烧蚀碳化钨铜多组分等离子体发射光谱的时空演化研究]. Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis, 2023, 43(5): 1384-1400. DOI:10.3964/j.issn.1000-0593(2023)05-1394-07
    4. Hang, Y.-H., Qiu, Y., Zhou, Y. et al. Effects of pulse energy ratios on plasma characteristics of dual-pulse fiber-optic laser-induced breakdown spectroscopy. Chinese Physics B, 2022, 31(2): 024212. DOI:10.1088/1674-1056/ac1fdb
    5. Dwivedi, V., Veis, M., Marín Roldán, A. et al. CF-LIBS study of pure Ta, and WTa + D coating as fusion-relevant materials: a step towards future in situ compositional quantification at atmospheric pressure. European Physical Journal Plus, 2021, 136(11): 1177. DOI:10.1140/epjp/s13360-021-02179-0
    6. Wu, H., Li, C., Wu, D. et al. Characterization of laser-induced breakdown spectroscopy on tungsten at variable ablation angles using a coaxial system in a vacuum. Journal of Analytical Atomic Spectrometry, 2021, 36(10): 2074-2084. DOI:10.1039/d1ja00196e
    7. Xue, B., Tian, Y., Li, N. et al. Spatiotemporal and spectroscopic investigations of the secondary plasma generated during double-pulse laser-induced breakdown in bulk water. Journal of Analytical Atomic Spectrometry, 2020, 35(12): 2880-2892. DOI:10.1039/d0ja00139b
    8. Hou, Z., Jeong, S., Deguchi, Y. et al. Way-out for laser-induced breakdown spectroscopy. Plasma Science and Technology, 2020, 22(7): 070101. DOI:10.1088/2058-6272/ab95f7

    Other cited types(0)

Catalog

    Article views (184) PDF downloads (290) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return