Advanced Search+
Yi ZHANG (张毅), Zhibin GUO (郭志彬). Nonlinear phase dynamics of ideal kink mode in the presence of shear flow[J]. Plasma Science and Technology, 2021, 23(4): 45101-045101. DOI: 10.1088/2058-6272/abe274
Citation: Yi ZHANG (张毅), Zhibin GUO (郭志彬). Nonlinear phase dynamics of ideal kink mode in the presence of shear flow[J]. Plasma Science and Technology, 2021, 23(4): 45101-045101. DOI: 10.1088/2058-6272/abe274

Nonlinear phase dynamics of ideal kink mode in the presence of shear flow

Funds: This project was supported by the National MCF Energy R&D Program of China (No. 2018YFE0311400)
More Information
  • Received Date: December 18, 2020
  • Revised Date: January 28, 2021
  • Accepted Date: February 01, 2021
  • We investigate nonlinear phase dynamics of an ideal kink mode, induced by E × B flow. Here the phase is the cross phase (θc) between perturbed stream function of velocity (ф˜) and magnetic field (φ˜ ), i.e. θc = θфθψ. A dimensionless parameter, analogous to the Richardson number, Ri = 16γkink2E2kink: the normalized growth rate of the pure kink mode; ωˆE: normalized E × B shearing rate) is defined to measure the competition between phase pinning by the current density and phase detuning by the flow shear. When Ri> 1, θc is locked to a fixed value, corresponding to the conventional eigenmode solution. When Ri ≤1, θc enters a phase slipping or oscillating state, corresponding to a nonmodal solution. The nonlinear phase dynamics method provides a more intuitive explanation of the complex ynamical behavior of the kink mode in the presence of E × B shear flow.
  • [1]
    Kadomtsev B B 1992 Tokamak Plasma: A Complex Physical System (Bristol: IOP Publishing)
    [2]
    White R B 2001 The Theory of Toroidally Confined Plasmas 2nd edn (London: Imperial College Press)
    [3]
    Wesson J A 1978 Nucl. Fusion 18 87
    [4]
    Boyd T J M and Freidberg J P 2003 Ideal Magnetohydrodynamics (Cambridge: Cambridge University Press)
    [5]
    Snyder P B et al 2007 Nucl. Fusion 47 961
    [6]
    Furukawa M and Tokuda S 2005 Phys. Rev. Lett. 94 175001
    [7]
    Waelbroeck F L 1996 Phys. Plasmas 3 1047
    [8]
    Schnack D D 2009 Lectures in Magnetohydrodynamics: With An Appendix on Extended MHD (Berlin: Springer)
    [9]
    Schmid P J 2007 Annu. Rev. Fluid Mech. 39 129
    [10]
    Guo Z B and Diamond P H 2015 Phys. Rev. Lett. 114 145002
    [11]
    Wilks T M et al 2018 Nucl. Fusion 58 112002
    [12]
    Xu T C et al 2020 Nucl. Fusion 60 0160129
    [13]
    Zhang Y et al 2019 Phys. Plasmas 26 052508
    [14]
    Kang H and Diamond P H 2019 Phys. Plasmas 26 102304
    [15]
    Miles J W 1961 J. Fluid Mech. 10 496
    [16]
    Adler R 1946 Proc. IRE 34 351
    [17]
    Acebrón J A et al 2005 Rev. Mod. Phys. 77 137
    [18]
    Pikovsky A, Rosenblum M and Kurths J 2001 Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge: Cambridge University Press)
    [19]
    Zhang Y, Guo Z B and Diamond P H 2020 Phys. Rev. Lett. 125 255003
  • Cited by

    Periodical cited type(3)

    1. Zhang, Y., Guo, Z.B., Qin, C.C. et al. Impact of triangularity on edge peeling-ballooning modes in H-mode plasmas. Physics of Plasmas, 2024, 31(2): 022110. DOI:10.1063/5.0174192
    2. Wang, L.P., Guo, Z.B., Mao, Z.J. et al. Phase finite time singularity: On the dissolution of a surface MHD eigenmode to the Alfvén continuum. Physics of Plasmas, 2023, 30(3): 032105. DOI:10.1063/5.0132609
    3. Zhang, Y., Guo, Z.B., Diamond, P.H. et al. Dephasing and phase-locking: Dual role of radial electric field in edge MHD dynamics of toroidally confined plasmas. Physics of Plasmas, 2022, 29(11): 112101. DOI:10.1063/5.0105360

    Other cited types(0)

Catalog

    Article views (283) PDF downloads (394) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return