Advanced Search+
Duan XIE (谢端), Yan YIN(银燕), Tongpu YU (余同普), Hongyu ZHOU (周泓宇), Ziyu CHEN (陈自宇), Hongbin ZHUO (卓红斌). High harmonic generation driven by two-color relativistic circularly polarized laser pulses at various frequency ratios[J]. Plasma Science and Technology, 2021, 23(4): 45502-045502. DOI: 10.1088/2058-6272/abe848
Citation: Duan XIE (谢端), Yan YIN(银燕), Tongpu YU (余同普), Hongyu ZHOU (周泓宇), Ziyu CHEN (陈自宇), Hongbin ZHUO (卓红斌). High harmonic generation driven by two-color relativistic circularly polarized laser pulses at various frequency ratios[J]. Plasma Science and Technology, 2021, 23(4): 45502-045502. DOI: 10.1088/2058-6272/abe848

High harmonic generation driven by two-color relativistic circularly polarized laser pulses at various frequency ratios

Funds: This work is supported by the National Key R&D Program of China (No. 2018YFA0404802), Science Challenge Project
(No. TZ2016005), National Natural Science Foundation of China (Nos. 11774430, 11875319), Research Project of
NUDT (Nos. ZK18-02-02), Fok Ying-Tong Education Foundation (No. 161007), the Fundamental Research Funds
for the Central Universities (YJ202025), the Natural Science Foundation of Hunan Province (Nos. 2020JJ5614 and
2020JJ5624) and the Scientific Research Foundation of Hunan Provincial Education Department (No. 20A042). We
would like to thank the National Supercomputing Center in Guangzhou (NSCC-GZ) for providing their computing
facilities.
More Information
  • Received Date: November 19, 2020
  • Revised Date: February 15, 2021
  • Accepted Date: February 18, 2021
  • High harmonic generation (HHG) by two-color counter-rotating relativistic laser pulses with arbitrary frequency ratio is investigated through particle-in-cell simulations. It is shown that the dichromatic laser driver at various frequency ratios can effectively produce high-order harmonics with different spectral features. A general selection rule of this extended scheme can be obtained and the corresponding harmonic helicity can be identified through a simple analytical model based on a relativistic oscillating mirror. Thus, the results in this paper may offer new opportunities for arbitrary spectral control of generated harmonics, which is of significance for diverse potential applications in practice.
  • [1]
    Cireasa R et al 2015 Nat. Phys. 11 654
    [2]
    La-O-Vorakiat C et al 2009 Phys. Rev. Lett. 103 257402
    [3]
    La-O-Vorakiat C et al 2012 Phys. Rev. X 2 011005
    [4]
    Von Korff Schmising C et al 2014 Phys. Rev. Lett. 112 217203
    [5]
    Wang T H et al 2012 Phys. Rev. Lett. 108 267403
    [6]
    Böwering N et al 2001 Phys. Rev. Lett. 86 1187
    [7]
    Ferré A et al 2015 Nat. Photonics 9 93
    [8]
    López-Flores V et al 2012 Phys. Rev. B 86 014424
    [9]
    Schütz G, Knülle M and Ebert H 1993 Phys. Scr. T49A 302
    [10]
    Boeglin C et al 2010 Nature 465 458
    [11]
    Liu Y et al 2011 Phys. Rev. Lett. 107 166803
    [12]
    Gierz I et al 2012 Nano Lett. 12 3900
    [13]
    Allaria E et al 2014 Phys. Rev. X 4 041040
    [14]
    Ferrari E et al 2015 Sci. Rep. 5 13531
    [15]
    Hernández-García C et al 2016 Phys. Rev. A 93 043855
    [16]
    Lambert G et al 2015 Nat. Commun. 6 6167
    [17]
    Quéré F 2006 Phys. Rev. Lett. 96 125004
    [18]
    Nomura Y et al 2009 Nat. Phys. 5 124
    [19]
    Bulanov S V, Naumova N M and Pegoraro F 1994 Phys. Plasmas 1 745
    [20]
    Lichters R, Meyer-ter-Vehn J and Pukhov A 1996 Phys. Plasmas 3 3425
    [21]
    Von Der Linde D and Rzàzewski K 1996 Appl. Phys. B 63 499
    [22]
    Baeva T, Gordienko S and Pukhov A 2006 Phys. Rev. E 74 046404
    [23]
    Pukhov A 2006 Nat. Phys. 2 439
    [24]
    Dromey B et al 2006 Nat. Phys. 2 456
    [25]
    Thaury C et al 2007 Nat. Phys. 3 424
    [26]
    Dromey B et al 2007 Phys. Rev. Lett. 99 085001
    [27]
    Zepf M et al 2007 Plamsa Phys. Control. Fusion 49 B149
    [28]
    Heissler P et al 2012 Phys. Rev. Lett. 108 235003
    [29]
    Chen Z Y and Pukhov A 2016 Nat. Commun. 7 12515
    [30]
    Chen Z Y et al 2018 Opt. Express 26 4572
    [31]
    Pukhov A, An Der Brügge D and Kostyukov I 2010 Plasma Phys. Control. Fusion 52 124039
    [32]
    An Der Brügge D and Pukhov A 2010 Phys. Plasmas 17 033110
    [33]
    Dromey B et al 2012 Nat. Phys. 8 804
    [34]
    Kfir O et al 2015 Nat. Photonics 9 99
    [35]
    Zhou X B et al 2009 Phys. Rev. Lett. 102 073902
    [36]
    Fleischer A et al 2014 Nat. Photonics 8 543
    [37]
    Hickstein D D et al 2015 Nat. Photonics 9 743
    [38]
    Chen Z Y 2018 Phys. Rev. E 97 043202
    [39]
    Xie D, Yin Y and Zhuo H B 2020 Appl. Phys. B 126 105
    [40]
    Arber T D et al 2015 Plasma Phys. Control. Fusion 57 113001
    [41]
    Mirzanejad S and Salehi M 2013 Phys. Rev. A 87 063815
    [42]
    Edwards M R and Mikhailova J M 2016 Phys. Rev. Lett. 117 125001
  • Related Articles

    [1]J COSFELD, P DREWS, B BLACKWELL, M JAKUBOWSKI, H NIEMANN, D ZHANG, Y FENG, the Wendelstein -X Team. Numerical estimate of multi-species ion sound speed of Langmuir probe interpretations in the edge plasmas of Wendelstein 7-X[J]. Plasma Science and Technology, 2020, 22(8): 85102-085102. DOI: 10.1088/2058-6272/ab8974
    [2]P DREWS, H NIEMANN, J COSFELD, Y GAO, J GEIGER, O GRULKE, M HENKEL, D HÖSCHEN, K HOLLFELD, C KILLER, AKRÄMER-FLECKEN, Y LIANG, S LIU, D NICOLAI, O NEUBAUER, M RACK, B SCHWEER, G SATHEESWARAN, L RUDISCHHAUSER, N SANDRI, N WANG, the W-X Team. Magnetic configuration effects on the edge heat flux in the limiter plasma on W7-X measured using the infrared camera and the combined probe[J]. Plasma Science and Technology, 2018, 20(5): 54003-054003. DOI: 10.1088/2058-6272/aaa968
    [3]Guozhong DENG (邓国忠), Xiaoju LIU (刘晓菊), Liang WANG (王亮), Shaocheng LIU (刘少承), Jichan XU (许吉禅), Wei FENG (冯威), Jianbin LIU (刘建斌), Huan LIU (刘欢), Xiang GAO (高翔). Modeling of divertor power footprint widths on EAST by SOLPS5.0/B2.5-Eirene[J]. Plasma Science and Technology, 2017, 19(4): 45101-045101. DOI: 10.1088/2058-6272/aa5802
    [4]Doo-Hee CHANG, Seung Ho JEONG, Min PARK, Tae-Seong KIM, Bong-Ki JUNG, Kwang Won LEE, Sang Ryul IN. Discharge Characteristics of Large-Area High-Power RF Ion Source for Positive and Negative Neutral Beam Injectors[J]. Plasma Science and Technology, 2016, 18(12): 1220-1225. DOI: 10.1088/1009-0630/18/12/13
    [5]K. HANADA, H. ZUSHI, H. IDEI, K. NAKAMURA, M. ISHIGURO, S. TASHIMA, E. I. KALINNIKOVA, Y. NAGASHIMA, M. HASEGAWA, A. FUJISAWA, A. HIGASHIJIMA, S. KAWASAKI, H. NAKASHIMA, O. MITARAI, A. FUKUYAMA, Y. TAKASE, X. GAO, H. LIU, J. QIAN, M. ONO, R. RAMAN. Power Balance Estimation in Long Duration Discharges on QUEST[J]. Plasma Science and Technology, 2016, 18(11): 1069-1075. DOI: 10.1088/1009-0630/18/11/03
    [6]WANG Xianwei(汪献伟), XIE Fei(谢飞), JIN Huan(金环). Calculation and Optimization of ITER Upper VS Feeder Under an Electromagnetic Load[J]. Plasma Science and Technology, 2014, 16(11): 1063-1067. DOI: 10.1088/1009-0630/16/11/12
    [7]BU Jingliang (布景亮), LIU Yong (刘永), ZHANG Xinjun (张新军), TI Ang (提昂), et al.. Experimental Determination of the ICRF Power Depositing on the Electrons in HT-7[J]. Plasma Science and Technology, 2013, 15(11): 1100-1102. DOI: 10.1088/1009-0630/15/11/04
    [8]CUI Xuewu (崔学武), PAN Yudong (潘宇东), LI Jiaxian (李佳鲜), ZHANG Jinhua (张锦华), MAO Rui (毛瑞). Simulation Study for Divertor Geometry and Gas Puffng to Handle Huge Exhaust Power in HL-2M with SOLPS5.0[J]. Plasma Science and Technology, 2013, 15(6): 489-492. DOI: 10.1088/1009-0630/15/6/01
    [9]PENG Jianfei (彭建飞), XUAN Weimin (宣伟民), WANG Haibing (王海兵), LI Huajun (李华俊), WANG Yingqiao (王英翘), WANG Shujin (王树锦). Study on Matching a 300 MVA Motor Generator with an Ohmic Heating Power Supply in HL-2M[J]. Plasma Science and Technology, 2013, 15(3): 300-302. DOI: 10.1088/1009-0630/15/3/22
    [10]K. SHIMADA, T. TERAKADO, K. YAMAUCHI, M. MATSUKAWA, O. BAULAIGUE, R. COLETTI, A. COLETTI, L. NOVELLO. Minimization of Reactive Power Fluctuation in JT-60SA Magnet Power Supply[J]. Plasma Science and Technology, 2013, 15(2): 184-187. DOI: 10.1088/1009-0630/15/2/22
  • Cited by

    Periodical cited type(3)

    1. El-Hadeed, M.M.A., Bourham, M.A., Al-Halim, M.A.A. Modeling of Thrust Properties for Capillary-Type Pulsed Plasma Thrusters Using Electrothermal Discharge in Teflon. IEEE Transactions on Plasma Science, 2024. DOI:10.1109/TPS.2024.3502626
    2. Zhao, Y., Zhang, Y., Wu, J. et al. Characteristics of plasma in a novel laser-assisted pulsed plasma thruster. Plasma Science and Technology, 2022, 24(7): 074001. DOI:10.1088/2058-6272/ac337b
    3. Zhao, Y., Tan, S., Wu, J. et al. The ablation characteristics of laser-assisted pulsed plasma thruster with metal propellant. Plasma Science and Technology, 2021, 23(10): 104007. DOI:10.1088/2058-6272/ac10ff

    Other cited types(0)

Catalog

    Article views (113) PDF downloads (102) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return