Advanced Search+
Duan XIE (谢端), Yan YIN(银燕), Tongpu YU (余同普), Hongyu ZHOU (周泓宇), Ziyu CHEN (陈自宇), Hongbin ZHUO (卓红斌). High harmonic generation driven by two-color relativistic circularly polarized laser pulses at various frequency ratios[J]. Plasma Science and Technology, 2021, 23(4): 45502-045502. DOI: 10.1088/2058-6272/abe848
Citation: Duan XIE (谢端), Yan YIN(银燕), Tongpu YU (余同普), Hongyu ZHOU (周泓宇), Ziyu CHEN (陈自宇), Hongbin ZHUO (卓红斌). High harmonic generation driven by two-color relativistic circularly polarized laser pulses at various frequency ratios[J]. Plasma Science and Technology, 2021, 23(4): 45502-045502. DOI: 10.1088/2058-6272/abe848

High harmonic generation driven by two-color relativistic circularly polarized laser pulses at various frequency ratios

Funds: This work is supported by the National Key R&D Program of China (No. 2018YFA0404802), Science Challenge Project
(No. TZ2016005), National Natural Science Foundation of China (Nos. 11774430, 11875319), Research Project of
NUDT (Nos. ZK18-02-02), Fok Ying-Tong Education Foundation (No. 161007), the Fundamental Research Funds
for the Central Universities (YJ202025), the Natural Science Foundation of Hunan Province (Nos. 2020JJ5614 and
2020JJ5624) and the Scientific Research Foundation of Hunan Provincial Education Department (No. 20A042). We
would like to thank the National Supercomputing Center in Guangzhou (NSCC-GZ) for providing their computing
facilities.
More Information
  • Received Date: November 19, 2020
  • Revised Date: February 15, 2021
  • Accepted Date: February 18, 2021
  • High harmonic generation (HHG) by two-color counter-rotating relativistic laser pulses with arbitrary frequency ratio is investigated through particle-in-cell simulations. It is shown that the dichromatic laser driver at various frequency ratios can effectively produce high-order harmonics with different spectral features. A general selection rule of this extended scheme can be obtained and the corresponding harmonic helicity can be identified through a simple analytical model based on a relativistic oscillating mirror. Thus, the results in this paper may offer new opportunities for arbitrary spectral control of generated harmonics, which is of significance for diverse potential applications in practice.
  • [1]
    Cireasa R et al 2015 Nat. Phys. 11 654
    [2]
    La-O-Vorakiat C et al 2009 Phys. Rev. Lett. 103 257402
    [3]
    La-O-Vorakiat C et al 2012 Phys. Rev. X 2 011005
    [4]
    Von Korff Schmising C et al 2014 Phys. Rev. Lett. 112 217203
    [5]
    Wang T H et al 2012 Phys. Rev. Lett. 108 267403
    [6]
    Böwering N et al 2001 Phys. Rev. Lett. 86 1187
    [7]
    Ferré A et al 2015 Nat. Photonics 9 93
    [8]
    López-Flores V et al 2012 Phys. Rev. B 86 014424
    [9]
    Schütz G, Knülle M and Ebert H 1993 Phys. Scr. T49A 302
    [10]
    Boeglin C et al 2010 Nature 465 458
    [11]
    Liu Y et al 2011 Phys. Rev. Lett. 107 166803
    [12]
    Gierz I et al 2012 Nano Lett. 12 3900
    [13]
    Allaria E et al 2014 Phys. Rev. X 4 041040
    [14]
    Ferrari E et al 2015 Sci. Rep. 5 13531
    [15]
    Hernández-García C et al 2016 Phys. Rev. A 93 043855
    [16]
    Lambert G et al 2015 Nat. Commun. 6 6167
    [17]
    Quéré F 2006 Phys. Rev. Lett. 96 125004
    [18]
    Nomura Y et al 2009 Nat. Phys. 5 124
    [19]
    Bulanov S V, Naumova N M and Pegoraro F 1994 Phys. Plasmas 1 745
    [20]
    Lichters R, Meyer-ter-Vehn J and Pukhov A 1996 Phys. Plasmas 3 3425
    [21]
    Von Der Linde D and Rzàzewski K 1996 Appl. Phys. B 63 499
    [22]
    Baeva T, Gordienko S and Pukhov A 2006 Phys. Rev. E 74 046404
    [23]
    Pukhov A 2006 Nat. Phys. 2 439
    [24]
    Dromey B et al 2006 Nat. Phys. 2 456
    [25]
    Thaury C et al 2007 Nat. Phys. 3 424
    [26]
    Dromey B et al 2007 Phys. Rev. Lett. 99 085001
    [27]
    Zepf M et al 2007 Plamsa Phys. Control. Fusion 49 B149
    [28]
    Heissler P et al 2012 Phys. Rev. Lett. 108 235003
    [29]
    Chen Z Y and Pukhov A 2016 Nat. Commun. 7 12515
    [30]
    Chen Z Y et al 2018 Opt. Express 26 4572
    [31]
    Pukhov A, An Der Brügge D and Kostyukov I 2010 Plasma Phys. Control. Fusion 52 124039
    [32]
    An Der Brügge D and Pukhov A 2010 Phys. Plasmas 17 033110
    [33]
    Dromey B et al 2012 Nat. Phys. 8 804
    [34]
    Kfir O et al 2015 Nat. Photonics 9 99
    [35]
    Zhou X B et al 2009 Phys. Rev. Lett. 102 073902
    [36]
    Fleischer A et al 2014 Nat. Photonics 8 543
    [37]
    Hickstein D D et al 2015 Nat. Photonics 9 743
    [38]
    Chen Z Y 2018 Phys. Rev. E 97 043202
    [39]
    Xie D, Yin Y and Zhuo H B 2020 Appl. Phys. B 126 105
    [40]
    Arber T D et al 2015 Plasma Phys. Control. Fusion 57 113001
    [41]
    Mirzanejad S and Salehi M 2013 Phys. Rev. A 87 063815
    [42]
    Edwards M R and Mikhailova J M 2016 Phys. Rev. Lett. 117 125001
  • Related Articles

    [1]Xingquan WU (伍兴权), Guosheng XU (徐国盛), Baonian WAN (万宝年), Jens Juul RASMUSSEN, Volker NAULIN, Anders Henry NIELSEN, Liang CHEN (陈良), Ran CHEN (陈冉), Ning YAN (颜宁), Linming SHAO (邵林明). A new model of the L–H transition and H-mode power threshold[J]. Plasma Science and Technology, 2018, 20(9): 94003-094003. DOI: 10.1088/2058-6272/aabb9e
    [2]Junying WU (伍俊英), Long WANG (汪龙), Yase LI (李雅瑟), Lijun YANG (杨利军), Manzoor SULTAN, Lang CHEN (陈朗). Characteristics of a plasma flow field produced by a metal array bridge foil explosion[J]. Plasma Science and Technology, 2018, 20(7): 75501-075501. DOI: 10.1088/2058-6272/aab783
    [3]Guosheng XU (徐国盛), Xingquan WU (伍兴权). Understanding L–H transition in tokamak fusion plasmas[J]. Plasma Science and Technology, 2017, 19(3): 33001-033001. DOI: 10.1088/2058-6272/19/3/033001
    [4]Kai GAO (高凯), Nasr A M HAFZ, Song LI (李松), Mohammad IRZAIE, Guangyu LI (李光宇), Quratul AIN. Online plasma diagnostics of a laser-produced plasma[J]. Plasma Science and Technology, 2017, 19(1): 15506-015506. DOI: 10.1088/1009-0630/19/1/015506
    [5]LAN Hui (兰慧), WANG Xinbing (王新兵), ZUO Duluo (左都罗). Time-Resolved Optical Emission Spectroscopy Diagnosis of CO2 Laser-Produced SnO2 Plasma[J]. Plasma Science and Technology, 2016, 18(9): 902-906. DOI: 10.1088/1009-0630/18/9/05
    [6]CHEN Bingyan (陈秉岩), ZHU Changping (朱昌平), FEI Juntao (费峻涛), HE Xiang (何湘), YIN Cheng (殷澄), WANG Yuan (王媛), JIANG Yongfeng (蒋永锋), CHEN Longwei (陈龙威), GAO Yuan (高远), HAN Qingbang (韩庆邦). Water Content Effect on Oxides Yield in Gas and Liquid Phase Using DBD Arrays in Mist Spray[J]. Plasma Science and Technology, 2016, 18(1): 41-50. DOI: 10.1088/1009-0630/18/1/08
    [7]CHEN Zhaoxi (陈肇玺), HU Liqun (胡立群), CHENG Yong (程勇), LEI Mingzhun (雷明准), et al.. The Design and Test of a Be Window for the ITER Radial X-Ray Camera[J]. Plasma Science and Technology, 2013, 15(11): 1160-1164. DOI: 10.1088/1009-0630/15/11/15
    [8]LIU Mingping (刘明萍), LIU Sanqiu (刘三秋), HE Jun (何俊), LIU Jie (刘杰). Electron Acceleration During the Mode Transition from Laser Wakefield to Plasma Wakefield Acceleration with a Dense-Plasma Wall[J]. Plasma Science and Technology, 2013, 15(9): 841-844. DOI: 10.1088/1009-0630/15/9/01
    [9]M. HANIF, M. SALIK, M. A. BAIG. Spectroscopic Studies of the Laser Produced Lead Plasma[J]. Plasma Science and Technology, 2011, 13(2): 129-134.
    [10]WANG Qiuying (王秋颖), LI Sen(李森), GU Fan(顾璠). Mechanism of Phase Transition from Liquid to Gas under Dielectric Barrier Discharge Plasma[J]. Plasma Science and Technology, 2010, 12(5): 585-591.

Catalog

    Article views PDF downloads Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return