Advanced Search+
Jiacheng LI (李嘉诚), Zhongzheng HUANG (黄钟政), Dawei LIU (刘大伟), Kuanlei ZHENG (郑宽磊). The enhanced aerosol deposition by bipolar corona discharge arrays[J]. Plasma Science and Technology, 2021, 23(6): 64010-064010. DOI: 10.1088/2058-6272/abf6ad
Citation: Jiacheng LI (李嘉诚), Zhongzheng HUANG (黄钟政), Dawei LIU (刘大伟), Kuanlei ZHENG (郑宽磊). The enhanced aerosol deposition by bipolar corona discharge arrays[J]. Plasma Science and Technology, 2021, 23(6): 64010-064010. DOI: 10.1088/2058-6272/abf6ad

The enhanced aerosol deposition by bipolar corona discharge arrays

Funds: This study is supported by National Key Research and Development Plan of China (No. 2016YFC0401001).
More Information
  • Received Date: December 14, 2020
  • Revised Date: April 06, 2021
  • Accepted Date: April 08, 2021
  • The corona discharges provide an efficient way to induce precipitation or eliminate fog by increasing ion density in the open air. In this paper, one bipolar corona discharge array (positive and negative high voltage coupled simultaneously) which can generate high densities of positive and negative ions is developed. The comparison between bipolar corona discharge array and unipolar corona discharge array (positive or negative coupled only) indicates that bipolar corona discharge array can generate ~3 times higher ion density than unipolar corona discharge array. More charged aerosols are produced through collisions between ions and aerosols. The collision rate between aerosols is increased substantially by the attractive forces between positively and negatively charged aerosols. The deposition of aerosols induced by bipolar discharges is 25.7% higher than that of unipolar discharges at the humidity super-saturation condition. Therefore, the bipolar corona discharge system is a new option for the large scale ion sources used for artificial weather modification.
  • [1]
    Coumou D and Rahmstorf S 2012 Nat. Clim. Change 2 491
    [2]
    Wallace J M et al 2014 Science 343 729
    [3]
    Schiermeier Q 2018 Nature 560 20
    [4]
    Chen H P, Sun J Q and Chen X L 2013 Atmos. Oceans Sci.Lett. 6 8
    [5]
    Stocks B J et al 1998 Clim. Change 38 1
    [6]
    Drossel B and Schwabl F 1992 Phys. Rev. Lett. 69 1629
    [7]
    Yang Y et al 2018 IEEE Trans. Plasma Sci. 46 1786
    [8]
    Zhang J, Jiao J J and Yang J 2000 Eng. Geol. 57 31
    [9]
    Hudson J G 1993 J. Appl. Meteor. 32 596
    [10]
    Hindman E E II, Hobbs P V and Radke L F 1977 J. Appl.Meteor. Climatol. 16 745
    [11]
    Pierce J R and Adams P J 2009 Geophys. Res. Lett. 36 L09820
    [12]
    Carslaw K S, Harrison R G and Kirkby J 2002 Science 298 1732
    [13]
    Harrison R G 2000 Space Sci. Rev. 94 381
    [14]
    Svensmark H et al 2017 Nat. Commun. 8 2199
    [15]
    Tan X et al 2016 IEEE Trans. Plasma Sci. 44 2724
    [16]
    Khain A et al 2004 J. Appl. Meteor. Climatol. 43 1513
    [17]
    Henin S et al 2009 Appl. Phys. Lett. 95 091107
    [18]
    Chambers R et al 2016 Arab. J. Geosci. 9 491
    [19]
    Ma S X et al 2020 Atmos. Chem. Phys. 20 11717
    [20]
    Raizer Y P 2001 Gas Discharge Physics ed V I Kisin trans (Berlin: Springer)
    [21]
    Khain A et al 2005 Q.J.R. Meteorol. Soc. 131 2639
    [22]
    Wang P K, Grover S N and Pruppacher H R 1978 J. Atmos.Sci. 35 1735
    [23]
    Zhou L M, Tinsley B A and Plemmons A 2009 J. Geophys.Res. Atmos. 114 D18201
    [24]
    Tinsley B A et al 2000 J. Atmos. Sci. 57 2118
    [25]
    Antao D S et al 2009 Plasma Sources Sci. Technol. 18 035016
    [26]
    Ercilbengoa A E, Spyrou N and Loiseau J F 2001 J. Phys. D:Appl. Phys. 34 584
    [27]
    Liu D W, Iza F and Kong M G 2009 Appl. Phys. Lett. 95 031501
    [28]
    Liu D W, Iza F and Kong M G 2009 Plasma Process Polym.6 446
    [29]
    Ito T et al 2015 Plasma Med. 5 283
    [30]
    Sekimoto K and Takayama M 2007 Int. J. Mass Spectrom.261 38
    [31]
    Chen J H and Davidson J H 2003 Plasma Chem. Plasma Process. 23 83
    [32]
    Riba J R, Morosini A and Capelli F 2018 Energies 11 2671
    [33]
    Yao X M et al 2019 Chem. Eng. J. 362 339
    [34]
    Zhang B, He J L and Ji Y M 2019 IEEE Trans. Dielectr.Electr. Insul. 26 1403
    [35]
    Zhang L et al 2014 J. Appl. Phys. 116 113301
    [36]
    Hinds W C 1999 Aerosol Technology: Properties, Behavior,and Measurement of Airborne Particles (New York: Wiley)
    [37]
    Zhang Y Z et al 2020 High Volt. (https://doi.org/10.1049/hve2.12036)
    [38]
    Jidenko N and Borra J P 2012 J. Hazard. Mater. 235–236 237
    [39]
    Tinsley B A et al 2008 Rep. Prog. Phys. 71 066801
    [40]
    Wang P K et al 2003 J. Geophys. Res. 108 4194
    [41]
    Zhou L M et al 1998 Energy Fuels. 12 1191
  • Related Articles

    [1]Jun DENG (邓俊), Liming HE (何立明), Xingjian LIU (刘兴建), Yi CHEN (陈一). Numerical simulation of plasma-assisted combustion of methane-air mixtures in combustion chamber[J]. Plasma Science and Technology, 2018, 20(12): 125502. DOI: 10.1088/2058-6272/aacdef
    [2]Pedro AFFONSO NOBREGA, Alain GAUNAND, Vandad ROHANI, François CAUNEAU, Laurent FULCHERI. Applying chemical engineering concepts to non-thermal plasma reactors[J]. Plasma Science and Technology, 2018, 20(6): 65512-065512. DOI: 10.1088/2058-6272/aab301
    [3]Yi WU (吴翊), Yufei CUI (崔彧菲), Jiawei DUAN (段嘉炜), Hao SUN (孙昊), Chunlin WANG (王春林), Chunping NIU (纽春萍). Influence of arc current and pressure on non-chemical equilibrium air arc behavior[J]. Plasma Science and Technology, 2018, 20(1): 14021-014021. DOI: 10.1088/2058-6272/aa9325
    [4]Gui LI (李桂), Muyang QIAN (钱沐杨), Sanqiu LIU (刘三秋), Huaying CHEN (陈华英), Chunsheng REN (任春生), Dezhen WANG (王德真). A numerical simulation study on active species production in dense methane-air plasma discharge[J]. Plasma Science and Technology, 2018, 20(1): 14004-014004. DOI: 10.1088/2058-6272/aa8f3c
    [5]N KHADIR, K KHODJA, A BELASRI. Methane conversion using a dielectric barrier discharge reactor at atmospheric pressure for hydrogen production[J]. Plasma Science and Technology, 2017, 19(9): 95502-095502. DOI: 10.1088/2058-6272/aa6d6d
    [6]HE Yuchen (何雨辰), Satoshi UEHARA, Hidemasa TAKANA, Hideya NISHIYAMA. Numerical Modelling and Simulation of Chemical Reactions in a Nano-Pulse Discharged Bubble for Water Treatment[J]. Plasma Science and Technology, 2016, 18(9): 924-932. DOI: 10.1088/1009-0630/18/9/09
    [7]HU Shuanghui (胡爽慧), WANG Baowei (王保伟), LV Yijun (吕一军), YAN Wenjuan (闫文娟). Conversion of Methane to C2 Hydrocarbons and Hydrogen Using a Gliding Arc Reactor[J]. Plasma Science and Technology, 2013, 15(6): 555-561. DOI: 10.1088/1009-0630/15/6/13
    [8]LI Zhihong (李志宏), GUO Bing (郭冰), LI Yunju (李云居), SU Jun (苏俊), LI Ertao (李二涛), BAI Xixiang (白希祥), WANG Youbao (王友宝), ZENG Sheng (曾晟), WANG Baoxiang (王宝祥), YAN Shengquan (颜胜权), LI Zhichang (李志常), et al. Determination of the Astrophysical S(E) Factors or Rates for Radiative Capture Reaction with One Nucleon Transfer Reaction[J]. Plasma Science and Technology, 2012, 14(6): 488-491. DOI: 10.1088/1009-0630/14/6/11
    [9]SUN Yanpeng (孙艳朋), NIE Yong (聂勇), WU Angshan (吴昂山), JI Dengxiang(姬登祥), YU Fengwen (于凤文), JI Jianbing (计建炳. Carbon Dioxide Reforming of Methane to Syngas by Thermal Plasma[J]. Plasma Science and Technology, 2012, 14(3): 252-256. DOI: 10.1088/1009-0630/14/3/12
    [10]WANG Kangjun, LI Xiaosong, ZHU Aimin. A Green Process for High-Concentration Ethylene and Hydrogen Production from Methane in a Plasma-Followed-by-Catalyst Reactor[J]. Plasma Science and Technology, 2011, 13(1): 77-81.

Catalog

    Article views (134) PDF downloads (91) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return