Advanced Search+
Abdullah ZAFAR, Ping ZHU, Ahmad ALI, Shiyong ZENG (曾市勇), Haolong LI (李浩龙). Effects of helium massive gas injection level on disruption mitigation on EAST[J]. Plasma Science and Technology, 2021, 23(7): 75103-075103. DOI: 10.1088/2058-6272/abfea3
Citation: Abdullah ZAFAR, Ping ZHU, Ahmad ALI, Shiyong ZENG (曾市勇), Haolong LI (李浩龙). Effects of helium massive gas injection level on disruption mitigation on EAST[J]. Plasma Science and Technology, 2021, 23(7): 75103-075103. DOI: 10.1088/2058-6272/abfea3

Effects of helium massive gas injection level on disruption mitigation on EAST

Funds: his research was supported by the National Magnetic Confinement Fusion Science Program of China (No. 2019YFE03050004), National Natural Science Foundation of China (Nos. 11775221 and 51821005), US DOE (Nos. DE-FG02-86ER53218 and DESC0018001), and the Fundamental Research Funds for the Central Universities at Huazhong University of Science and Technology (No. 2019kfyXJJS193).
More Information
  • Received Date: February 21, 2021
  • Revised Date: May 04, 2021
  • Accepted Date: May 05, 2021
  • In this study, NIMROD simulations are performed to investigate the effects of massive helium gas injection level on the induced disruption on EAST tokamak. It is demonstrated in simulations that two different scenarios of plasma cooling (complete cooling and partial cooling) take place for different amounts of injected impurities. For the impurity injection above a critical level, a single MHD activity is able to induce a complete core temperature collapse. For impurity injection below the critical level, a series of multiple minor disruptions occur before the complete thermal quench.
  • [1]
    Hender T C et al 2007 Nucl. Fusion 47 S128
    [2]
    Lehnen M et al 2015 J. Nucl. Mater 463 39
    [3]
    Taylor P L et al 1999 Phys. Plasmas 6 1872
    [4]
    Bakhtiari M et al 2005 Nucl. Fusion 45 318
    [5]
    Granetz R et al 2006 Nucl. Fusion 46 1001
    [6]
    Pautasso G et al 2009 Plasma Phys. Control. Fusion 51 124056
    [7]
    Reux C et al 2010 Nucl. Fusion 50 095006
    [8]
    Lehnen M et al 2011 Nucl. Fusion 51 123010
    [9]
    Hollmann E M et al 2009 AIP Conf. Proc. 1161 65
    [10]
    Hollmann E M et al 2019 Phys. Rev. Lett. 122 065001
    [11]
    Commaux N et al 2010 Nucl. Fusion 50 112001
    [12]
    Commaux N et al 2016 Nucl. Fusion 56 046007
    [13]
    Hollmann E M et al 2011 J. Nucl. Mater 415 S27
    [14]
    Bakhtiari M et al 2011 Nucl. Fusion 51 063007
    [15]
    Pautasso G et al 2011 Nucl. Fusion 51 103009
    [16]
    Lehnen M et al 2013 Nucl. Fusion 53 093007
    [17]
    De Vries P C et al 2012 Plasma Phys. Control. Fusion 54 124032
    [18]
    Duan Y M et al 2015 J. Nucl. Mater 463 727
    [19]
    Chen D L et al 2018 Nucl. Fusion 58 036003
    [20]
    Huang Y et al 2018 Nucl. Fusion 58 126024
    [21]
    Ding Y et al 2018 Plasma Sci. Technol. 20 125101
    [22]
    Pestchanyi S et al 2015 Fusion Eng. Des. 96–97 685
    [23]
    Hollmann E M, Humphreys D A and Parks P B 2012 Nucl.Fusion 52 033001
    [24]
    Putvinski S et al 2010 Disruption mitigation in ITER Proc.23rd IAEA Fusion Energy Conf. (Daejeon, Korea) (Vienna:IAEA) pp 1–6 ITR
    [25]
    Sugihara M et al 2012 Disruption impacts and their mitigation target values Proc. 24th IAEA Fusion Energy Conf. (San Diego, USA) (Vienna: IAEA)
    [26]
    Sovinec C R et al 2004 J. Comput. Phys. 195 355
    [27]
    Huysmans G T and Czarny O 2007 Nucl. Fusion 47 659
    [28]
    Czarny O and Huysmans G T 2008 J. Comput. Phys. 227 7423
    [29]
    Hu D et al 2021 Nucl. Fusion 61 026015
    [30]
    Jardin S C et al 2012 Comput. Sci. Discov 5 014002
    [31]
    Izzo V A et al 2008 Phys. Plasmas 15 056109
    [32]
    Izzo V A 2013 Phys. Plasmas 20 056107
    [33]
    Izzo V A et al 2015 Nucl. Fusion 55 073032
    [34]
    Kim C C et al 2019 Phys. Plasmas 26 042510
    [35]
    Izzo V A 2020 Nucl. Fusion 60 066023
    [36]
    Whyte D G et al 1997 Energy balance, radiation and stability during rapid plasma termination via impurity pellet injections on DIII-D Proc. 24th EPS Conf. on Controlled Fusion and Plasma Physics (Berchtesgaden,Germany) (EPS)
  • Related Articles

    [1]Jun DENG (邓俊), Liming HE (何立明), Xingjian LIU (刘兴建), Yi CHEN (陈一). Numerical simulation of plasma-assisted combustion of methane-air mixtures in combustion chamber[J]. Plasma Science and Technology, 2018, 20(12): 125502. DOI: 10.1088/2058-6272/aacdef
    [2]Hualei ZHANG (张华磊), Liming HE (何立明), Jinlu YU (于锦禄), Wentao QI (祁文涛), Gaocheng CHEN (陈高成). Investigation of flame structure in plasma-assisted turbulent premixed methane-air flame[J]. Plasma Science and Technology, 2018, 20(2): 24001-024001. DOI: 10.1088/2058-6272/aa9850
    [3]Dan ZHAO (赵丹), Feng YU (于锋), Amin ZHOU (周阿敏), Cunhua MA (马存花), Bin DAI (代斌). High-efficiency removal of NOx using dielectric barrier discharge nonthermal plasma with water as an outer electrode[J]. Plasma Science and Technology, 2018, 20(1): 14020-014020. DOI: 10.1088/2058-6272/aa861c
    [4]QI Xiaohua (齐晓华), YANG Liang (杨亮), YAN Huijie (闫慧杰), JIN Ying (金英), HUA Yue (滑跃), REN Chunsheng (任春生). Experimental Study on Surface Dielectric Barrier Discharge Plasma Actuator with Different Encapsulated Electrode Widths for Airflow Control at Atmospheric Pressure[J]. Plasma Science and Technology, 2016, 18(10): 1005-1011. DOI: 10.1088/1009-0630/18/10/07
    [5]ZHOU Qiujiao (周秋娇), QI Bing (齐冰), HUANG Jianjun (黄建军), PAN Lizhu (潘丽竹), LIU Ying (刘英). Measurement of Electron Density and Ion Collision Frequency with Dual Assisted Grounded Electrode DBD in Atmospheric Pressure Helium Plasma Jet[J]. Plasma Science and Technology, 2016, 18(4): 400-405. DOI: 10.1088/1009-0630/18/4/12
    [6]NIU Jinhai(牛金海), ZHANG Zhihui(张志慧), FAN Hongyu(范红玉), YANG Qi(杨杞), LIU Dongping(刘东平), QIU Jieshan(邱介山). Plasma-Assisted Chemical Vapor Deposition of Titanium Oxide Films by Dielectric Barrier Discharge in TiCl 4 /O 2 /N 2 Gas Mixtures[J]. Plasma Science and Technology, 2014, 16(7): 695-700. DOI: 10.1088/1009-0630/16/7/11
    [7]HONG Yi (洪义), LU Na (鲁娜), PAN Jing (潘静), LI Jie (李杰), WU Yan (吴彦). Discharge Characteristics of an Atmospheric Pressure Argon Plasma Jet Generated with Screw Ring-Ring Electrodes in Surface Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2013, 15(8): 780-786. DOI: 10.1088/1009-0630/15/8/12
    [8]GUO Bin (郭斌), PENG Li (彭莉), QIU Xiaoming (邱孝明). Tunability of One-Dimensional Plasma Photonic Crystals with an External Magnetic Field[J]. Plasma Science and Technology, 2013, 15(7): 609-613. DOI: 10.1088/1009-0630/15/7/01
    [9]Constantine L. XAPLANTERIS, Eleni D. FILIPPAKI. Influence of an External DC Electric Current on Plasma Cleaning Rate: an Application on the Enlarged Plasma-Surface Theory[J]. Plasma Science and Technology, 2013, 15(5): 448-454. DOI: 10.1088/1009-0630/15/5/11
    [10]QIAN Muyang(钱沐杨), REN Chunsheng(任春生), WANG Dezhen(王德真), FENG Yan(冯岩), ZHANG Jialiang(张家良). Atmospheric Pressure Cold Argon/Oxygen Plasma Jet Assisted by Preionization of Syringe Needle Electrode[J]. Plasma Science and Technology, 2010, 12(5): 561-565.
  • Cited by

    Periodical cited type(1)

    1. Zhu, J., Li, L., Tian, Y. et al. Mutual effects between a gliding arc discharge and a premixed flame. Plasma Science and Technology, 2024, 26(12): 125505. DOI:10.1088/2058-6272/ad8120

    Other cited types(0)

Catalog

    Article views (93) PDF downloads (82) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return