Advanced Search+
Genfan DING (丁根凡), Qingquan YANG (杨清泉), Guosheng XU (徐国盛), Xin LIN (林新), Yang YE (叶扬), Ran CHEN (陈冉), Yumin WANG (王嵎民), Qing ZANG (臧庆), Heng LAN (兰恒), Liang CHEN (陈良). Comparison of natural grassy ELM behavior in favorable/unfavorable Bt in EAST[J]. Plasma Science and Technology, 2021, 23(9): 95105-095105. DOI: 10.1088/2058-6272/ac061b
Citation: Genfan DING (丁根凡), Qingquan YANG (杨清泉), Guosheng XU (徐国盛), Xin LIN (林新), Yang YE (叶扬), Ran CHEN (陈冉), Yumin WANG (王嵎民), Qing ZANG (臧庆), Heng LAN (兰恒), Liang CHEN (陈良). Comparison of natural grassy ELM behavior in favorable/unfavorable Bt in EAST[J]. Plasma Science and Technology, 2021, 23(9): 95105-095105. DOI: 10.1088/2058-6272/ac061b

Comparison of natural grassy ELM behavior in favorable/unfavorable Bt in EAST

Funds: This work was supported by the National Magnetic Confinement Fusion Energy R&D Program of China (No. 2017YFE0301300); National Natural Science Foundation of China (Nos. 12005257 and 11905143); the Key Research Program of Frontier Sciences, the CASHIPS Director's Fund (No. YZJJ2020QN13); Special Research Assistant Funding of CAS and China Postdoctoral Science Foundation (No. 2020M671913).
More Information
  • Received Date: March 28, 2021
  • Revised Date: May 25, 2021
  • Accepted Date: May 26, 2021
  • The properties of grassy edge-localized modes (ELMs) in EAST in the favorable and unfavorable Bt are statistically studied. Statistical analysis indicates that there is no systematical difference in the frequencies of grassy ELMs under the two different magnetic configurations in the similar parameter spaces. The high-frequency grassy ELM (fELM > 1 kHz) in unfavorable Bt is dependent on the high poloidal beta βp and high triangularity δu, while the high-frequency grassy ELM (fELM > 1 kHz) in favorable Bt appears to rely on the high plasma density. A frequently occurring phenomenon in favorable Bt defined as 'clustered ELM' seems to be the most evident difference in ELM behavior between favorable and unfavorable Bt. Statistical analysis shows that larger plasma-wall outer gap, longer plasma elongation, lower low-hybrid wave heating power and electron cyclotron resonance heating power favor the occurrence of clustered grassy ELMs. Further studies indicate that the generation of clustered grassy ELMs could be correlated with the lower electron temperature in the bulk plasma.
  • [1]
    ASDEX Team 1989 Nucl. Fusion 29 1959
    [2]
    Loarte A et al 2003 J. Nucl. Mater. 313–316 962
    [3]
    Zhitlukhin A et al 2007 J. Nucl. Mater. 363–365 301
    [4]
    Evans T E et al 2004 Phys. Rev. Lett. 92 235003
    [5]
    Lang P T et al 2003 Nucl. Fusion 43 1110
    [6]
    Xiao W W et al 2012 Nucl. Fusion 52 114027
    [7]
    Lunsford R et al 2018 Nucl. Fusion 58 036007
    [8]
    Greenwald M et al 1999 Phys. Plasmas 6 1943
    [9]
    Burrell K H et al 2002 Plasma Phys. Control. Fusion 44 A253
    [10]
    Stober J et al 2001 Nucl. Fusion 41 1123
    [11]
    Maingi R et al 2005 Nucl. Fusion 45 264
    [12]
    Kamada Y et al 2000 Plasma Phys. Control. Fusion 42 A247
    [13]
    Lang P T et al 2013 Nucl. Fusion 53 043004
    [14]
    Maingi R 2014 Nucl. Fusion 54 114016
    [15]
    Wan Y X et al 2017 Nucl. Fusion 57 102009
    [16]
    Zhu Y R et al 2020 Nucl. Fusion 60 046014
    [17]
    Saibene G et al 2005 Nucl. Fusion 45 297
    [18]
    Stober J et al 2005 Nucl. Fusion 45 1213
    [19]
    Nazikian R et al 2018 Nucl. Fusion 58 106010
    [20]
    Wang Y F et al 2021 Nucl. Fusion 61 016032
    [21]
    Yang Q Q et al 2020 Nucl. Fusion 60 076012
    [22]
    Xu G S et al 2019 Phys. Rev. Lett. 122 255001
    [23]
    Xu G S et al 2020 Nucl. Fusion 60 086001
    [24]
    Li K D et al 2020 Plasma Phys. Control. Fusion 62 095025
    [25]
    Carlstrom T N, Burrell K H and Groebner R J 1998 Plasma Phys. Control. Fusion 40 669
    [26]
    Ryter F et al 1998 Plasma Phys. Control. Fusion 40 725
    [27]
    Chen L et al 2018 Phys. Plasmas 25 072504
    [28]
    Carlstrom T N et al 1996 Plasma Phys. Control. Fusion 38 1231
    [29]
    Liu J B et al 2016 Nucl. Fusion 56 066006
    [30]
    Liu J B et al 2019 Nucl. Fusion 59 126046
    [31]
    Lin X et al 2021 Nucl. Fusion 61 026014
    [32]
    Harrer G F et al 2018 Nucl. Fusion 58 112001
    [33]
    Labit B et al 2019 Nucl. Fusion 59 086020
    [34]
    Gong X et al 2019 Nucl. Fusion 59 086030
    [35]
    Wan B N et al 2017 Nucl. Fusion 57 102019
    [36]
    Wang Y M et al 2019 Fusion Eng. Des. 148 111286
  • Related Articles

    [1]David BAILIE, Cormac HYLAND, Raj L SINGH, Steven WHITE, Gianluca SARRI, Francis P KEENAN, David RILEY, Steven J ROSE, Edward G HILL, Feilu WANG (王菲鹿), Dawei YUAN (袁大伟), Gang ZHAO (赵刚), Huigang WEI (魏会冈), Bo HAN (韩波), Baoqiang ZHU (朱宝强), Jianqiang ZHU (朱健强), Pengqian YANG (杨朋千). An investigation of the L-shell x-ray conversion efficiency for laser-irradiated tin foils[J]. Plasma Science and Technology, 2020, 22(4): 45201-045201. DOI: 10.1088/2058-6272/ab6188
    [2]B I MIN, D K DINH, D H LEE, T H KIM, S CHOI. Numerical modelling of a low power non-transferred arc plasma reactor for methane conversion[J]. Plasma Science and Technology, 2019, 21(6): 64005-064005. DOI: 10.1088/2058-6272/ab00ce
    [3]Peng LIU (刘朋), Xuesong LIU (刘雪松), Jun SHEN (沈俊), Yongxiang YIN (印永祥), Tao YANG (杨涛), Qiang HUANG (黄强), Daniel AUERBACH, Aart W KLEIYN. CO2 conversion by thermal plasma with carbon as reducing agent: high CO yield and energy efficiency[J]. Plasma Science and Technology, 2019, 21(1): 12001-012001. DOI: 10.1088/2058-6272/aadf30
    [4]Xu CAO (曹栩), Weixuan ZHAO (赵玮璇), Renxi ZHANG (张仁熙), Huiqi HOU (侯惠奇), Shanping CHEN (陈善平), Ruina ZHANG (张瑞娜). Conversion of NO with a catalytic packed-bed dielectric barrier discharge reactor[J]. Plasma Science and Technology, 2017, 19(11): 115504. DOI: 10.1088/2058-6272/aa7ced
    [5]N KHADIR, K KHODJA, A BELASRI. Methane conversion using a dielectric barrier discharge reactor at atmospheric pressure for hydrogen production[J]. Plasma Science and Technology, 2017, 19(9): 95502-095502. DOI: 10.1088/2058-6272/aa6d6d
    [6]Xingyu GUO (郭星宇), Zhe GAO (高喆), Guozhang JIA (贾国章). One-dimensional ordinary–slow extraordinary–Bernstein mode conversion in the electron cyclotron range of frequencies[J]. Plasma Science and Technology, 2017, 19(8): 85101-085101. DOI: 10.1088/2058-6272/aa6a50
    [7]ZHANG Weiwei (张卫卫), DENG Baiquan (邓柏权), ZUO Haoyi (左浩毅), ZHENG Xianjun (曾宪俊), CAO Xiaogang (曹小岗), XUE Xiaoyan (薛晓艳), OU Wei (欧巍), CAO Zhi (曹智), GOU Fujun (芶富均). Analysis of Power Model for Linear Plasma Device[J]. Plasma Science and Technology, 2016, 18(8): 844-847. DOI: 10.1088/1009-0630/18/8/09
    [8]PANG Xuexia(庞学霞), DENG Zechao(邓泽超), JIA Pengying(贾鹏英), LIANG Weihua(梁伟华). Influence of Ionization Degrees on Conversion of CO and CO 2 in Atmospheric Plasma near the Ground[J]. Plasma Science and Technology, 2014, 16(8): 782-788. DOI: 10.1088/1009-0630/16/8/09
    [9]HU Shuanghui (胡爽慧), WANG Baowei (王保伟), LV Yijun (吕一军), YAN Wenjuan (闫文娟). Conversion of Methane to C2 Hydrocarbons and Hydrogen Using a Gliding Arc Reactor[J]. Plasma Science and Technology, 2013, 15(6): 555-561. DOI: 10.1088/1009-0630/15/6/13
    [10]Y. YOSHIMURA, S. KUBO, T. SHIMOZUMA, H. IGAMI, H. TAKAHASHI, M. NISHIURA, S. OGASAWARA, R. MAKINO, T. MUTOH, H. YAMADA, A. KOMORI. High Density Plasma Heating by EC-Waves Injected from the High-Field Side for Mode Conversion to Electron Bernstein Waves in LHD[J]. Plasma Science and Technology, 2013, 15(2): 93-96. DOI: 10.1088/1009-0630/15/2/02
  • Cited by

    Periodical cited type(1)

    1. Zhang, L., Wang, X., Zheng, J. et al. Linear characteristics of dust acoustic waves in two dimensional inhomogeneous complex plasmas. AIP Advances, 2023, 13(5): 055012. DOI:10.1063/5.0150589

    Other cited types(0)

Catalog

    Article views (113) PDF downloads (95) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return