Advanced Search+
Dongjie CUI (崔东洁), Yue YIN (阴悦), Huandong LI (李洹东), Xiaoxia HU (胡小霞), Jie ZHUANG (庄杰), Ruonan MA (马若男), Zhen JIAO (焦浈). Comparative transcriptome analysis of atmospheric pressure cold plasma enhanced early seedling growth in Arabidopsis thaliana[J]. Plasma Science and Technology, 2021, 23(8): 85502-085502. DOI: 10.1088/2058-6272/ac0686
Citation: Dongjie CUI (崔东洁), Yue YIN (阴悦), Huandong LI (李洹东), Xiaoxia HU (胡小霞), Jie ZHUANG (庄杰), Ruonan MA (马若男), Zhen JIAO (焦浈). Comparative transcriptome analysis of atmospheric pressure cold plasma enhanced early seedling growth in Arabidopsis thaliana[J]. Plasma Science and Technology, 2021, 23(8): 85502-085502. DOI: 10.1088/2058-6272/ac0686

Comparative transcriptome analysis of atmospheric pressure cold plasma enhanced early seedling growth in Arabidopsis thaliana

Funds: This work was supported by National Natural Science Foundation of China (Nos. 11605159 and 11405147), Chinese Postdoctoral Science Foundation (No. 2017M612412), the Foundation of Key Technology Research Project of Henan Province (No. 182102311115), Key Discipline Construction Project of Zhengzhou University (No. 32410257) and Youth Innovation Project of Key Discipline of Zhengzhou University (No. XKZDQN202002).
More Information
  • Received Date: January 11, 2021
  • Revised Date: May 25, 2021
  • Accepted Date: May 27, 2021
  • The stimulatory effects of atmospheric pressure cold plasma (APCP) on plant growth have attracted much attention due to its great potential as a new approach to increase crop growth and production. However, the transcriptome changes of plants induced by APCP treatment are unknown. Herein, the comparative transcriptome analysis was performed to identify the transcriptional response of Arabidopsis thaliana seedlings to APCP. Results showed that APCP exhibited a dual effect (stimulation or inhibition) on Arabidopsis seedling growth dependent on the treatment time and the maximum stimulatory effects were achieved by 1 min APCP treatment. The metabolic analysis of amino acid, glutathione (GSH) and phytohormone demonstrated that 1 min APCP treatment decreased most amino acids concentrations in Arabidopsis seedling, while the accumulations of GSH, gibberellins and cytokinin were significantly increased. The RNA-Seq analysis showed that a total of 218 differentially expressed genes (DEGs) were identified in 1 min APCP-treated seedlings versus the control, including 20 up-regulated and 198 down-regulated genes. The DEGs were enriched in pathways related to GSH metabolism, mitogen-activated protein kinase (MAPK) signaling transduction and plant resistance against pathogens. Moreover, most of the DEGs were defense, stimuli or stress-responsive genes and encoded proteins with oxidoreductase activity. Expression determination of six randomly selected DEGs by quantitative real-time PCR demonstrated similar pattern with the RNA-Seq data. These results indicated that the moderate APCP treatment may regulate the expression of stimuli/stress-responsive genes involved in GSH, phytohormone/amino metabolism and plant defense against pathogens via MAPK signal transduction pathway, accordingly enhance Arabidopsis seedling growth. This study provides a theoretical basis for the application of APCP in agriculture.
  • [1]
    Arjunan K P et al 2015 Int. J. Mol. Sci. 16 2971
    [2]
    Puač N, Gherardi M and Shiratani M 2018 Plasma Process.Polym. 15 1700174
    [3]
    Khamsen N et al 2016 ACS Appl. Mater. Interfaces 8 19268
    [4]
    Zahoranová A 2015 Plasma Chem. Plasma Process. 36 397
    [5]
    Jiang J F et al 2014 Plasma Sci. Technol. 16 54
    [6]
    Šerá B et al 2012 Hemp (Cannabis sativa L.) seeds after plasma treatment Proc. 2012 13th Int. Conf. on Optimization of Electrical and Electronic Equipment (Brasov, Romania) (Piscataway, NJ: IEEE) (https://doi.org/10.1109/optim.2012.6231981)
    [7]
    Šerá B et al 2013 Plasma Sci. Technol. 15 935
    [8]
    Li L et al 2015 Sci. Rep. 5 13033
    [9]
    Selcuk M, Oksuz L and Basaran P 2008 Bioresour. Technol.99 5104
    [10]
    Iranbakhsh A et al 2018 Plasma Chem. Plasma Process. 38 29
    [11]
    Ito M et al 2018 Plasma Process. Polym. 15 1700073
    [12]
    Iseni S et al 2016 Appl. Phys. Lett. 108 184101
    [13]
    Graves D B 2012 J. Phys. D: Appl. Phys. 45 263001
    [14]
    Ishibashi Y et al 2012 Ann. Bot. 111 95
    [15]
    Huang Y T et al 2017 BMC Plant Biol. 17 1
    [16]
    Mildažienė V et al 2019 Sci. Rep. 9 6437
    [17]
    Moghanloo M et al 2019 3 Biotech 9 288
    [18]
    Iranbakhsh A et al 2020 Plasma Chem. Plasma Process.40 527
    [19]
    Gierczik K et al 2020 Plasma Process. Polym. 17 1900123
    [20]
    Adhikari B et al 2020 Free Radic. Biol. Med. 156 57
    [21]
    Cui D J et al 2019 Front. Plant Sci. 10 1322
    [22]
    Xu H B et al 2019 J. Phys. D: Appl. Phys. 52 395201
    [23]
    Qi W C et al 2015 Ecotoxicol. Environ. Saf. 115 243
    [24]
    Wang L et al 2018 J. Environ. Radioact. 195 1
    [25]
    Wang H F et al 2018 Plant J. 95 976
    [26]
    Morison J I L and Gifford R M 1984 Aust. J. Plant Physiol.11 375
    [27]
    Orsini F et al 2010 J. Exp. Bot. 61 3787
    [28]
    Jander G et al 2004 Plant J. 39 465
    [29]
    Wang Y et al 2008 J. Chromatogr. B 863 94
    [30]
    Liu J F et al 2014 Analyst 139 5605
    [31]
    Chen M L et al 2011 J. Chromatogr. B 879 938
    [32]
    Kojima M et al 2009 Plant Cell Physiol. 50 1201
    [33]
    Anders S, Pyl P T and Huber W 2015 Bioinformatics 31 166
    [34]
    Kim D, Langmead B and Salzberg S L 2015 Nat. Methods 12 357
    [35]
    Trapnell C et al 2010 Nat. Biotechnol. 28 511
    [36]
    Love M I, Huber W and Anders S 2014 Genome Biol. 15 550
    [37]
    Eisen M B et al 1998 Proc. Natl. Acad. Sci. USA 95 14863
    [38]
    Chen C J et al 2020 Mol. Plant. 13 1194
    [39]
    Begara-Morales J C et al 2014 Plant Cell Physiol. 55 1080
    [40]
    Noctor G et al 2012 Plant Cell Environ. 35 454
    [41]
    Shashikanthalu S P, Ramireddy L and Radhakrishnan M 2020 J. Appl. Res. Med. Aromat. Plants 18 100259
    [42]
    Rifna E J, Ratish Ramanan K and Mahendran R 2019 Trends Food Sci. Technol. 86 95
    [43]
    Ghasempour M et al 2020 Contrib. Plasma Phys. 60 e201900159
    [44]
    Puligundla P, Kim J W and Mok C 2017 Food Control 71 376
    [45]
    Okushima Y et al 2007 Plant Cell 19 118
    [46]
    Nibau C, Gibbs D J and Coates J C 2008 New Phytol. 179 595
    [47]
    Guyomarc’h S et al 2012 Phil. Trans. R. Soc. B 367 1509
    [48]
    Hodge A 2009 Plant Cell Environ. 32 628
    [49]
    Puač N et al 2014 Appl. Phys. Lett. 104 214106
    [50]
    Morot-Gaudry J F, Job D and Lea P J 2001 Amino acid metabolism ed P J Lea and J F Morot-Gaudry Plant Nitrogen (Berlin: Springer)
    [51]
    Forde B G and Lea P J 2007 J. Exp. Bot. 58 2339
    [52]
    Amarante L D, Lima J D and Sodek L 2006 Environ. Exp. Bot.58 123
    [53]
    Alburquerque N et al 2006 Ann. Appl. Biol. 149 27
    [54]
    Ashton F M et al 1976 Annu. Rev. Plant Physiol. 27 95
    [55]
    Foyer C H and Noctor G 2001 The molecular biology and metabolism of glutathione Significance of Glutathione to Plant Adaptation to the Environment ed D Grill et al (Dordrecht: Springer)
    [56]
    Semane B et al 2007 Physiol. Plant. 129 519
    [57]
    Marrs K A 1996 Annu. Rev. Plant Physiol. Plant Mol. Biol.47 127
    [58]
    Wang Y et al 2014 Plant Physiol. Biochem. 79 10
    [59]
    Wang X L et al 2013 Ecol. Res. 29 167
    [60]
    Tamaki V and Mercier H 2007 J. Plant Physiol. 164 1543
    [61]
    Pandhair V and Sekhon B S 2006 J. Plant Biochem.Biotechnol. 15 71
    [62]
    Hayashi N et al 2015 Japan. J. Appl. Phys. 54 06GD01
    [63]
    Ji S H et al 2015 Plasma Process. Polym. 12 1164
    [64]
    Panngom K et al 2014 PLoS One 9 e99300
    [65]
    Caregnato F F et al 2008 Mar. Pollut. Bull. 56 1119
    [66]
    Hou Y H et al 2019 Mar. Drugs 17 147
    [67]
    Zhao F Y et al 2015 Plant Growth Regul. 75 535
    [68]
    Petersen L N et al 2009 J. Exp. Bot. 60 3727
    [69]
    Howden A J M et al 2011 New Phytol. 190 49
    [70]
    Degutytė-Fomins L et al 2020 Japan. J. Appl. Phys. 59 SH1001
    [71]
    Takei K, Yamaya T and Sakakibara H 2004 J. Biol. Chem. 279 41866
    [72]
    Hirose N et al 2008 J. Exp. Bot. 59 75
    [73]
    Mizutani M and Ohta D 2010 Annu. Rev. Plant Biol. 61 291
    [74]
    Zhao X Y et al 2007 Plant Physiol. 145 106
    [75]
    Shan C et al 2014 PLoS One 9 e87110
    [76]
    Lo S F et al 2017 Plant Biotechnol. J. 15 850
    [77]
    Wuddineh W A et al 2015 Plant Biotechnol. J. 13 636
    [78]
    Zhou Y C and Underhill S J R 2016 Plant Physiol. Biochem.98 81
    [79]
    Zhu Q H et al 2014 New Phytol. 201 574
    [80]
    Ma R N et al 2015 J. Hazard. Mater. 300 643
    [81]
    Novoselov V V et al 2015 Exp. Mol. Pathol. 99 575
    [82]
    Bullard J H et al 2010 BMC Bioinfor. 11 94
    [83]
    Marioni J C et al 2008 Genome Res. 18 1509
    [84]
    Lei R et al 2015 Gene 557 82
    [85]
    Calabrese C et al 2013 BMC Genomics 14 855
  • Related Articles

    [1]David BAILIE, Cormac HYLAND, Raj L SINGH, Steven WHITE, Gianluca SARRI, Francis P KEENAN, David RILEY, Steven J ROSE, Edward G HILL, Feilu WANG (王菲鹿), Dawei YUAN (袁大伟), Gang ZHAO (赵刚), Huigang WEI (魏会冈), Bo HAN (韩波), Baoqiang ZHU (朱宝强), Jianqiang ZHU (朱健强), Pengqian YANG (杨朋千). An investigation of the L-shell x-ray conversion efficiency for laser-irradiated tin foils[J]. Plasma Science and Technology, 2020, 22(4): 45201-045201. DOI: 10.1088/2058-6272/ab6188
    [2]B I MIN, D K DINH, D H LEE, T H KIM, S CHOI. Numerical modelling of a low power non-transferred arc plasma reactor for methane conversion[J]. Plasma Science and Technology, 2019, 21(6): 64005-064005. DOI: 10.1088/2058-6272/ab00ce
    [3]Peng LIU (刘朋), Xuesong LIU (刘雪松), Jun SHEN (沈俊), Yongxiang YIN (印永祥), Tao YANG (杨涛), Qiang HUANG (黄强), Daniel AUERBACH, Aart W KLEIYN. CO2 conversion by thermal plasma with carbon as reducing agent: high CO yield and energy efficiency[J]. Plasma Science and Technology, 2019, 21(1): 12001-012001. DOI: 10.1088/2058-6272/aadf30
    [4]Xu CAO (曹栩), Weixuan ZHAO (赵玮璇), Renxi ZHANG (张仁熙), Huiqi HOU (侯惠奇), Shanping CHEN (陈善平), Ruina ZHANG (张瑞娜). Conversion of NO with a catalytic packed-bed dielectric barrier discharge reactor[J]. Plasma Science and Technology, 2017, 19(11): 115504. DOI: 10.1088/2058-6272/aa7ced
    [5]N KHADIR, K KHODJA, A BELASRI. Methane conversion using a dielectric barrier discharge reactor at atmospheric pressure for hydrogen production[J]. Plasma Science and Technology, 2017, 19(9): 95502-095502. DOI: 10.1088/2058-6272/aa6d6d
    [6]Xingyu GUO (郭星宇), Zhe GAO (高喆), Guozhang JIA (贾国章). One-dimensional ordinary–slow extraordinary–Bernstein mode conversion in the electron cyclotron range of frequencies[J]. Plasma Science and Technology, 2017, 19(8): 85101-085101. DOI: 10.1088/2058-6272/aa6a50
    [7]ZHANG Weiwei (张卫卫), DENG Baiquan (邓柏权), ZUO Haoyi (左浩毅), ZHENG Xianjun (曾宪俊), CAO Xiaogang (曹小岗), XUE Xiaoyan (薛晓艳), OU Wei (欧巍), CAO Zhi (曹智), GOU Fujun (芶富均). Analysis of Power Model for Linear Plasma Device[J]. Plasma Science and Technology, 2016, 18(8): 844-847. DOI: 10.1088/1009-0630/18/8/09
    [8]PANG Xuexia(庞学霞), DENG Zechao(邓泽超), JIA Pengying(贾鹏英), LIANG Weihua(梁伟华). Influence of Ionization Degrees on Conversion of CO and CO 2 in Atmospheric Plasma near the Ground[J]. Plasma Science and Technology, 2014, 16(8): 782-788. DOI: 10.1088/1009-0630/16/8/09
    [9]HU Shuanghui (胡爽慧), WANG Baowei (王保伟), LV Yijun (吕一军), YAN Wenjuan (闫文娟). Conversion of Methane to C2 Hydrocarbons and Hydrogen Using a Gliding Arc Reactor[J]. Plasma Science and Technology, 2013, 15(6): 555-561. DOI: 10.1088/1009-0630/15/6/13
    [10]Y. YOSHIMURA, S. KUBO, T. SHIMOZUMA, H. IGAMI, H. TAKAHASHI, M. NISHIURA, S. OGASAWARA, R. MAKINO, T. MUTOH, H. YAMADA, A. KOMORI. High Density Plasma Heating by EC-Waves Injected from the High-Field Side for Mode Conversion to Electron Bernstein Waves in LHD[J]. Plasma Science and Technology, 2013, 15(2): 93-96. DOI: 10.1088/1009-0630/15/2/02
  • Cited by

    Periodical cited type(1)

    1. Zhang, L., Wang, X., Zheng, J. et al. Linear characteristics of dust acoustic waves in two dimensional inhomogeneous complex plasmas. AIP Advances, 2023, 13(5): 055012. DOI:10.1063/5.0150589

    Other cited types(0)

Catalog

    Article views (134) PDF downloads (247) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return