Advanced Search+
Yunxi SHI (施蕴曦), Yirui LU (卢奕睿), Yixi CAI (蔡忆昔), Yong HE (何勇), Yin ZHOU (周银), Yingxin CUI (崔应欣), Haoming SUN (孙浩铭). Analysis of the microstructure and elemental occurrence state of residual ash-PM following DPF regeneration by injecting oxygen into non-thermal plasma[J]. Plasma Science and Technology, 2021, 23(9): 95504-095504. DOI: 10.1088/2058-6272/ac1058
Citation: Yunxi SHI (施蕴曦), Yirui LU (卢奕睿), Yixi CAI (蔡忆昔), Yong HE (何勇), Yin ZHOU (周银), Yingxin CUI (崔应欣), Haoming SUN (孙浩铭). Analysis of the microstructure and elemental occurrence state of residual ash-PM following DPF regeneration by injecting oxygen into non-thermal plasma[J]. Plasma Science and Technology, 2021, 23(9): 95504-095504. DOI: 10.1088/2058-6272/ac1058

Analysis of the microstructure and elemental occurrence state of residual ash-PM following DPF regeneration by injecting oxygen into non-thermal plasma

Funds: This work is currently supported by National Natural Science Foundation of China (No. 51806085), China Postdoctoral Science Foundation (No. 2018M642175), Jiangsu Planned Projects for Postdoctoral Research Fund (No. 2018K101C), Open Research Subject of Key Laboratory of automotive measurement, control and safety (Xihua University) (No. QCCK2021-007) and Graduate Student Innovation Fund Project of Jiangsu Province (No. KYCX21_3354).
More Information
  • Received Date: February 25, 2021
  • Revised Date: June 22, 2021
  • Accepted Date: June 28, 2021
  • Particulate matter (PM) capture tests were carried out on clean diesel particulate filters (DPFs) under different loads (25%, 50%, 75% and 100%). DPFs were regenerated by a non-thermal plasma (NTP) injection device. Raman spectroscopy and x-ray photoelectron spectroscopy were used to investigate changes in the microstructure and element occurrence state of the sediment in DPF channel before and after regeneration. The order of the PM samples decreased before NTP treatment as the load increased; the amorphous carbon content was high, and the oxidation activity was higher. After NTP treatment, the carbon atoms at the edge of the microcrystalline structure in the ash-PM samples were oxidized, and the structure was reorganized; in addition, the amorphous carbon content decreased, and the structure was more diversified. Before NTP, the C element of PM samples was the main component, and the content of the O element was relatively low. The C element occurred in the form of C–C, C–OH, and O–C=O functional groups, and O atoms were mainly combined with C–O. After NTP, the content of Na, P, S, Ca, and other inorganic elements in ash-PM samples was prominent because C atoms were removed by NTP active substances. There were two forms of S element occurrence (SO42− and SO32−); the proportion of SO42− was approximately 40%, and the proportion of SO32− was approximately 60%. Study of the microstructure and element occurrence of the residues in the DPF channels improved our understanding of the mechanism of the low-temperature regeneration of DPF from NTP.
  • [1]
    Collier S et al 2015 Aerosol Sci. Technol. 49 86
    [2]
    Fang J et al 2019 Appl. Therm. Eng. 148 860
    [3]
    Caliskan H and Mori K 2017 Energy 128 128
    [4]
    Geng P et al 2015 Appl. Energy 148 449
    [5]
    Palma V et al 2015 Fuel 140 50
    [6]
    Meng Z W et al 2020 Fuel 262 116487
    [7]
    Gu L B et al 2017 Plasma Sci. Technol. 19 115503
    [8]
    Shi Y X et al 2016 Plasma Chem. Plasma Process. 36 783
    [9]
    Tan P Q et al 2020 Appl. Therm. Eng. 178 115628
    [10]
    Shi Y X et al 2020 Plasma Sci. Technol. 22 015504
    [11]
    Babaie M et al 2013 IEEE Trans. Plasma Sci. 41 2349
    [12]
    Babaie M et al 2016 Int. J. Environ. Sci. Technol. 13 221
    [13]
    Wang P et al 2015 Appl. Therm. Eng. 91 1
    [14]
    Ma C C et al 2017 Chin. J. Environ. Eng. 11 988 (in Chinese)
    [15]
    Xing S K et al 2013 Chin. Intern. Combust. Engine Eng. 34 8 (in Chinese)
    [16]
    Kuwahara T et al 2015 Ozone Sci. Eng. 37 518
    [17]
    Kuwahara T et al 2013 Appl. Energy 111 652
    [18]
    Kim H et al 2013 SAE Technical Paper 2013-01-2503 (https://doi.org/10.4271/2013-01-2503)
    [19]
    Kim H et al 2015 SAE Technical Paper 2015-01-1010 (https://doi.org/10.4271/2015-01-1010)
    [20]
    Shi Y X et al 2019 Fuel 253 1292
    [21]
    Shi Y X et al 2019 Appl. Therm. Eng. 150 612
    [22]
    Gao J B et al 2017 Appl. Therm. Eng. 119 593
    [23]
    Ma C C et al 2016 Appl. Therm. Eng. 99 1110
    [24]
    Sappok A et al 2011 J. Eng. Gas. Turbines Power-Trans.ASME 133 032805
    [25]
    Sappok A et al 2010 SAE Int. J. Fuels Lubr. 3 380
    [26]
    Sandham N D 2016 Flow Turbul. Combust. 97 1
    [27]
    Chen T et al 2017 IOP Conf. Ser. Earth Environ. Sci. 69 012060
    [28]
    Liati A et al 2012 J. Nanopart. Res. 14 1224
    [29]
    Liati A et al 2012 Atmos. Environ. 49 391
    [30]
    Fang J et al 2017 Appl. Therm. Eng. 124 633
    [31]
    Fang J et al 2020 J. Energy Inst. 93 1942
    [32]
    Maricq M M 2007 J. Aerosol Sci. 38 1079
    [33]
    Takaki K et al 2004 IEEE Trans. Dielectr. Electr. Insul. 11 481
    [34]
    Yagi S and Tanaka M 1979 J. Phys. D: Appl. Phys. 12 1509
    [35]
    Kogelschatz U, Eliasson B and Hirth M 1988 Ozone Sci. Eng.10 367
    [36]
    Kittelson D B 1998 J. Aerosol Sci. 29 575
    [37]
    Okubo M et al 2008 Plasma Chem. Plasma Process. 28 173
    [38]
    Grundmann J, Müller S and Zahn R J 2005 Plasma Chem.Plasma Process 25 455
    [39]
    Yao S L et al 2015 J. Electrostat. 75 35
    [40]
    Agudelo J R et al 2014 Combust. Flame 161 2904
    [41]
    Dippel B, Jander H and Heintzenberg J 1999 Phys. Chem.Chem. Phys. 1 4707
    [42]
    Ivleva N P et al 2007 Aerosol Sci. Technol. 41 655
    [43]
    Seong H J and Boehman A L 2013 Energy Fuels 27 1613
    [44]
    Wang Y S et al 2017 Fuel 190 237
    [45]
    Patel M et al 2012 Tribol. Int. 52 29
    [46]
    Sheng C D 2007 Fuel 86 2316
    [47]
    Ivleva N P et al 2007 Environ. Sci. Technol. 41 3702
    [48]
    Gao J B et al 2018 Fuel 219 62
    [49]
    Ruiz F A et al 2015 Fuel 161 18
    [50]
    Smith D M and Chughtai A R 1995 Colloid Surf. A 105 47
    [51]
    Gao J B et al 2016 Fuel 185 289
    [52]
    Geng W H et al 2009 Fuel 88 644
    [53]
    Xia W C et al 2014 Appl. Surf. Sci. 293 293
    [54]
    Mustafi N N et al 2010 Aerosol Sci. Technol. 44 954
    [55]
    Tree D R et al 2007 Prog. Energy Combust. Sci. 33 272
    [56]
    Gao J B et al 2017 Fuel 192 35
  • Related Articles

    [1]Mingxiang GAO, Baojun WANG, Bin GUO. Propagation of surface magnetoplasmon polaritons in a symmetric waveguide with two-dimensional electron gas[J]. Plasma Science and Technology, 2023, 25(9): 095001. DOI: 10.1088/2058-6272/acd09e
    [2]Haixin HU (胡海欣), Feng HE (何锋), Ping ZHU (朱平), Jiting OUYANG (欧阳吉庭). Numerical study of the influence of dielectric tube on propagation of atmospheric pressure plasma jet based on coplanar dielectric barrier discharge[J]. Plasma Science and Technology, 2018, 20(5): 54010-054010. DOI: 10.1088/2058-6272/aaaad9
    [3]M SHAHMANSOURI, A P MISRA. Surface plasmon oscillations in a semi-bounded semiconductor plasma[J]. Plasma Science and Technology, 2018, 20(2): 25001-025001. DOI: 10.1088/2058-6272/aa9213
    [4]Xiaoqiong WEN (温小琼), Qian LI (李倩), Jingsen LI (李井森), Chunsheng REN (任春生). Quantitative relationship between the maximum streamer length and discharge voltage of a pulsed positive streamer discharge in water[J]. Plasma Science and Technology, 2017, 19(8): 85401-085401. DOI: 10.1088/2058-6272/aa6bf0
    [5]ZHU Jun (祝俊). Dispersion Relation of Linear Waves in Quantum Magnetoplasmas[J]. Plasma Science and Technology, 2016, 18(7): 703-707. DOI: 10.1088/1009-0630/18/7/01
    [6]LIU Zhiwei (刘智惟), BAO Weimin (包为民), LI Xiaoping (李小平), SHI Lei (石磊), LIU Donglin (刘东林). Influences of Turbulent Reentry Plasma Sheath on Wave Scattering and Propagation[J]. Plasma Science and Technology, 2016, 18(6): 617-626. DOI: 10.1088/1009-0630/18/6/07
    [7]LIU Zhiwei (刘智惟), BAO Weimin (包为民), LI Xiaoping (李小平), LIU Donglin (刘东林), ZHOU Hui (周辉). Influence of Plasma Pressure Fluctuation on RF Wave Propagation[J]. Plasma Science and Technology, 2016, 18(2): 131-137. DOI: 10.1088/1009-0630/18/2/06
    [8]XIE Huasheng (谢华生), XIAO Yong (肖湧). PDRK: A General Kinetic Dispersion Relation Solver for Magnetized Plasma[J]. Plasma Science and Technology, 2016, 18(2): 97-107. DOI: 10.1088/1009-0630/18/2/01
    [9]XIAO Jixiong(肖集雄), CHEN Shixiu(陈仕修), TIAN Wei(田微), CHEN Kun(陈堃). Influence of the Beam Self-Fields on the Dispersion Characteristics of EM Waves in a Dielectric Waveguide Filled with Plasma[J]. Plasma Science and Technology, 2014, 16(1): 1-5. DOI: 10.1088/1009-0630/16/1/01
    [10]CHEN Zhaoquan (陈兆权), LIU Minghai (刘明海), HU Yelin (胡业林), ZHENG Xiaoliang (郑晓亮), LI Ping (李平), XIA Guangqing (夏广庆). Character Diagnosis for Surface-Wave Plasmas Excited by Surface Plasmon Polaritons[J]. Plasma Science and Technology, 2012, 14(8): 754-758. DOI: 10.1088/1009-0630/14/8/13
  • Cited by

    Periodical cited type(6)

    1. Zhang, Z., Wen, H.F., Li, L. et al. Imaging the distribution of a surface plasmon induced electromagnetic field at the nanoscale with MFSM. Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 2024, 63(10): 106001. DOI:10.35848/1347-4065/ad82c4
    2. Wei, G., Nie, Q., Zhang, Z. et al. Numerical investigation of a plasma-dielectric-plasma waveguide with tunable Fano resonances. Optik, 2024. DOI:10.1016/j.ijleo.2024.171819
    3. Gao, M., Wang, B., Guo, B. Propagation of surface magnetoplasmon polaritons in a symmetric waveguide with two-dimensional electron gas. Plasma Science and Technology, 2023, 25(9): 095001. DOI:10.1088/2058-6272/acd09e
    4. Pei, R., Liu, D., Zhang, Q. et al. Fluctuation of Plasmonically Induced Transparency Peaks within Multi-Rectangle Resonators. Sensors, 2023, 23(1): 226. DOI:10.3390/s23010226
    5. Wang, B., Guo, B. Chiral Berry plasmon dispersion of the two-dimensional electron gas based on a quantum hydrodynamic model. Physics of Plasmas, 2022, 29(8): 082101. DOI:10.1063/5.0097873
    6. Gric, T., Rafailov, E. Absorption enhancement in hyperbolic metamaterials by means of magnetic plasma. Applied Sciences (Switzerland), 2021, 11(11): 4720. DOI:10.3390/app11114720

    Other cited types(0)

Catalog

    Article views (147) PDF downloads (116) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return