Advanced Search+
Yunxi SHI (施蕴曦), Yirui LU (卢奕睿), Yixi CAI (蔡忆昔), Yong HE (何勇), Yin ZHOU (周银), Yingxin CUI (崔应欣), Haoming SUN (孙浩铭). Analysis of the microstructure and elemental occurrence state of residual ash-PM following DPF regeneration by injecting oxygen into non-thermal plasma[J]. Plasma Science and Technology, 2021, 23(9): 95504-095504. DOI: 10.1088/2058-6272/ac1058
Citation: Yunxi SHI (施蕴曦), Yirui LU (卢奕睿), Yixi CAI (蔡忆昔), Yong HE (何勇), Yin ZHOU (周银), Yingxin CUI (崔应欣), Haoming SUN (孙浩铭). Analysis of the microstructure and elemental occurrence state of residual ash-PM following DPF regeneration by injecting oxygen into non-thermal plasma[J]. Plasma Science and Technology, 2021, 23(9): 95504-095504. DOI: 10.1088/2058-6272/ac1058

Analysis of the microstructure and elemental occurrence state of residual ash-PM following DPF regeneration by injecting oxygen into non-thermal plasma

Funds: This work is currently supported by National Natural Science Foundation of China (No. 51806085), China Postdoctoral Science Foundation (No. 2018M642175), Jiangsu Planned Projects for Postdoctoral Research Fund (No. 2018K101C), Open Research Subject of Key Laboratory of automotive measurement, control and safety (Xihua University) (No. QCCK2021-007) and Graduate Student Innovation Fund Project of Jiangsu Province (No. KYCX21_3354).
More Information
  • Received Date: February 25, 2021
  • Revised Date: June 22, 2021
  • Accepted Date: June 28, 2021
  • Particulate matter (PM) capture tests were carried out on clean diesel particulate filters (DPFs) under different loads (25%, 50%, 75% and 100%). DPFs were regenerated by a non-thermal plasma (NTP) injection device. Raman spectroscopy and x-ray photoelectron spectroscopy were used to investigate changes in the microstructure and element occurrence state of the sediment in DPF channel before and after regeneration. The order of the PM samples decreased before NTP treatment as the load increased; the amorphous carbon content was high, and the oxidation activity was higher. After NTP treatment, the carbon atoms at the edge of the microcrystalline structure in the ash-PM samples were oxidized, and the structure was reorganized; in addition, the amorphous carbon content decreased, and the structure was more diversified. Before NTP, the C element of PM samples was the main component, and the content of the O element was relatively low. The C element occurred in the form of C–C, C–OH, and O–C=O functional groups, and O atoms were mainly combined with C–O. After NTP, the content of Na, P, S, Ca, and other inorganic elements in ash-PM samples was prominent because C atoms were removed by NTP active substances. There were two forms of S element occurrence (SO42− and SO32−); the proportion of SO42− was approximately 40%, and the proportion of SO32− was approximately 60%. Study of the microstructure and element occurrence of the residues in the DPF channels improved our understanding of the mechanism of the low-temperature regeneration of DPF from NTP.
  • [1]
    Collier S et al 2015 Aerosol Sci. Technol. 49 86
    [2]
    Fang J et al 2019 Appl. Therm. Eng. 148 860
    [3]
    Caliskan H and Mori K 2017 Energy 128 128
    [4]
    Geng P et al 2015 Appl. Energy 148 449
    [5]
    Palma V et al 2015 Fuel 140 50
    [6]
    Meng Z W et al 2020 Fuel 262 116487
    [7]
    Gu L B et al 2017 Plasma Sci. Technol. 19 115503
    [8]
    Shi Y X et al 2016 Plasma Chem. Plasma Process. 36 783
    [9]
    Tan P Q et al 2020 Appl. Therm. Eng. 178 115628
    [10]
    Shi Y X et al 2020 Plasma Sci. Technol. 22 015504
    [11]
    Babaie M et al 2013 IEEE Trans. Plasma Sci. 41 2349
    [12]
    Babaie M et al 2016 Int. J. Environ. Sci. Technol. 13 221
    [13]
    Wang P et al 2015 Appl. Therm. Eng. 91 1
    [14]
    Ma C C et al 2017 Chin. J. Environ. Eng. 11 988 (in Chinese)
    [15]
    Xing S K et al 2013 Chin. Intern. Combust. Engine Eng. 34 8 (in Chinese)
    [16]
    Kuwahara T et al 2015 Ozone Sci. Eng. 37 518
    [17]
    Kuwahara T et al 2013 Appl. Energy 111 652
    [18]
    Kim H et al 2013 SAE Technical Paper 2013-01-2503 (https://doi.org/10.4271/2013-01-2503)
    [19]
    Kim H et al 2015 SAE Technical Paper 2015-01-1010 (https://doi.org/10.4271/2015-01-1010)
    [20]
    Shi Y X et al 2019 Fuel 253 1292
    [21]
    Shi Y X et al 2019 Appl. Therm. Eng. 150 612
    [22]
    Gao J B et al 2017 Appl. Therm. Eng. 119 593
    [23]
    Ma C C et al 2016 Appl. Therm. Eng. 99 1110
    [24]
    Sappok A et al 2011 J. Eng. Gas. Turbines Power-Trans.ASME 133 032805
    [25]
    Sappok A et al 2010 SAE Int. J. Fuels Lubr. 3 380
    [26]
    Sandham N D 2016 Flow Turbul. Combust. 97 1
    [27]
    Chen T et al 2017 IOP Conf. Ser. Earth Environ. Sci. 69 012060
    [28]
    Liati A et al 2012 J. Nanopart. Res. 14 1224
    [29]
    Liati A et al 2012 Atmos. Environ. 49 391
    [30]
    Fang J et al 2017 Appl. Therm. Eng. 124 633
    [31]
    Fang J et al 2020 J. Energy Inst. 93 1942
    [32]
    Maricq M M 2007 J. Aerosol Sci. 38 1079
    [33]
    Takaki K et al 2004 IEEE Trans. Dielectr. Electr. Insul. 11 481
    [34]
    Yagi S and Tanaka M 1979 J. Phys. D: Appl. Phys. 12 1509
    [35]
    Kogelschatz U, Eliasson B and Hirth M 1988 Ozone Sci. Eng.10 367
    [36]
    Kittelson D B 1998 J. Aerosol Sci. 29 575
    [37]
    Okubo M et al 2008 Plasma Chem. Plasma Process. 28 173
    [38]
    Grundmann J, Müller S and Zahn R J 2005 Plasma Chem.Plasma Process 25 455
    [39]
    Yao S L et al 2015 J. Electrostat. 75 35
    [40]
    Agudelo J R et al 2014 Combust. Flame 161 2904
    [41]
    Dippel B, Jander H and Heintzenberg J 1999 Phys. Chem.Chem. Phys. 1 4707
    [42]
    Ivleva N P et al 2007 Aerosol Sci. Technol. 41 655
    [43]
    Seong H J and Boehman A L 2013 Energy Fuels 27 1613
    [44]
    Wang Y S et al 2017 Fuel 190 237
    [45]
    Patel M et al 2012 Tribol. Int. 52 29
    [46]
    Sheng C D 2007 Fuel 86 2316
    [47]
    Ivleva N P et al 2007 Environ. Sci. Technol. 41 3702
    [48]
    Gao J B et al 2018 Fuel 219 62
    [49]
    Ruiz F A et al 2015 Fuel 161 18
    [50]
    Smith D M and Chughtai A R 1995 Colloid Surf. A 105 47
    [51]
    Gao J B et al 2016 Fuel 185 289
    [52]
    Geng W H et al 2009 Fuel 88 644
    [53]
    Xia W C et al 2014 Appl. Surf. Sci. 293 293
    [54]
    Mustafi N N et al 2010 Aerosol Sci. Technol. 44 954
    [55]
    Tree D R et al 2007 Prog. Energy Combust. Sci. 33 272
    [56]
    Gao J B et al 2017 Fuel 192 35
  • Related Articles

    [1]Zilu ZHAO (赵紫璐), Dezheng YANG (杨德正), Wenchun WANG (王文春), Hao YUAN (袁皓), Li ZHANG (张丽), Sen WANG (王森). Volume added surface barrier discharge plasma excited by bipolar nanosecond pulse power in atmospheric air: optical emission spectra influenced by gap distance[J]. Plasma Science and Technology, 2018, 20(11): 115403. DOI: 10.1088/2058-6272/aac881
    [2]Xiang HE (何湘), Chong LIU (刘冲), Yachun ZHANG (张亚春), Jianping CHEN (陈建平), Yudong CHEN (陈玉东), Xiaojun ZENG (曾小军), Bingyan CHEN (陈秉岩), Jiaxin PANG (庞佳鑫), Yibing WANG (王一兵). Diagnostic of capacitively coupled radio frequency plasma from electrical discharge characteristics: comparison with optical emission spectroscopy and fluid model simulation[J]. Plasma Science and Technology, 2018, 20(2): 24005-024005. DOI: 10.1088/2058-6272/aa9a31
    [3]Yunfeng HAN (韩云峰), Shaoyang WEN (温少扬), Hongwei TANG (汤红卫), Xianhu WANG (王贤湖), Chongshan ZHONG (仲崇山). Influences of frequency on nitrogen fixation of dielectric barrier discharge in air[J]. Plasma Science and Technology, 2018, 20(1): 14001-014001. DOI: 10.1088/2058-6272/aa947a
    [4]Hao YUAN (袁皓), Wenchun WANG (王文春), Dezheng YANG (杨德正), Zilu ZHAO (赵紫璐), Li ZHANG (张丽), Sen WANG (王森). Atmospheric air dielectric barrier discharge excited by nanosecond pulse and AC used for improving the hydrophilicity of aramid fibers[J]. Plasma Science and Technology, 2017, 19(12): 125401. DOI: 10.1088/2058-6272/aa8766
    [5]Cheng PAN (潘成), Ju TANG (唐炬), Dibo WANG (王邸博), Yi LUO (罗毅), Ran ZHUO (卓然), Mingli FU (傅明利). Decay characters of charges on an insulator surface after different types of discharge[J]. Plasma Science and Technology, 2017, 19(7): 75503-075503. DOI: 10.1088/2058-6272/aa6436
    [6]TANG Jingfeng (唐井峰), WEI Liqiu (魏立秋), HUO Yuxin (霍玉鑫), SONG Jian (宋健), YU Daren (于达仁), ZHANG Chaohai (张潮海). Effect of Airflows on Repetitive Nanosecond Volume Discharges[J]. Plasma Science and Technology, 2016, 18(3): 273-277. DOI: 10.1088/1009-0630/18/3/10
    [7]YANG Fuxiang (杨富翔), MU Zongxin (牟宗信), ZHANG Jialiang (张家良). Discharge Modes Suggested by Emission Spectra of Nitrogen Dielectric Barrier Discharge with Wire-Cylinder Electrodes[J]. Plasma Science and Technology, 2016, 18(1): 79-85. DOI: 10.1088/1009-0630/18/1/14
    [8]Panagiotis SVARNAS. Vibrational Temperature of Excited Nitrogen Molecules Detected in a 13.56 MHz Electrical Discharge by Sheath-Side Optical Emission Spectroscopy[J]. Plasma Science and Technology, 2013, 15(9): 891-895. DOI: 10.1088/1009-0630/15/9/11
    [9]Imola MOLNAR, Judit PAPP, Alpar SIMON, Sorin Dan ANGHEL. Deactivation of Streptococcus mutans Biofilms on a Tooth Surface Using He Dielectric Barrier Discharge at Atmospheric Pressure[J]. Plasma Science and Technology, 2013, 15(6): 535-541. DOI: 10.1088/1009-0630/15/6/09
    [10]DIAO Ying, XU Jinzhou, HU Qianqian, ZHANG Jing, SHI Jianjun, GUO Ying. Electrical and Optical Characterization of Dielectric Barrier Discharge and Its Application to Plasma Treatment of Poly (ethylene terephtalate) (PET) Fibers[J]. Plasma Science and Technology, 2011, 13(6): 641-644.
  • Cited by

    Periodical cited type(23)

    1. Gao, X., Deng, Y., Wei, Z. et al. Catalytic oxidation of volatile organic compounds by plasma–metal oxide coupling. Journal of Environmental Chemical Engineering, 2025, 13(2): 116045. DOI:10.1016/j.jece.2025.116045
    2. Qu, M., Zheng, Y., Cheng, Z. et al. Mechanism of chlorobenzene removal in biotrickling filter enhanced by non-thermal plasma: Insights from biodiversity and functional gene perspectives. Bioresource Technology, 2025. DOI:10.1016/j.biortech.2024.131931
    3. Zang, X., Sun, H., Wang, W. et al. Plasma-catalytic removal of toluene over bimetallic M/Mn-BTC catalysts in dielectric barrier discharge reactor. Separation and Purification Technology, 2024. DOI:10.1016/j.seppur.2023.125667
    4. Zhang, W., Xing, Y., Hao, L. et al. Effect of gas components on the degradation mechanism of o-dichlorobenzene by non-thermal plasma technology with single dielectric barrier discharge. Chemosphere, 2023. DOI:10.1016/j.chemosphere.2023.139866
    5. Zhang, L., Zou, Z., Lei, Z. et al. Research on the Mechanism of Synergistic Treatment of VOCs–O3 by Low Temperature Plasma Catalysis Technology. Plasma Chemistry and Plasma Processing, 2023, 43(6): 1651-1672. DOI:10.1007/s11090-023-10366-3
    6. Tao, Y., Xu, Y., Chang, K. et al. Dielectric barrier discharge plasma synthesis of Ag/γ-Al2O3 catalysts for catalytic oxidation of CO. Plasma Science and Technology, 2023, 25(8): 085504. DOI:10.1088/2058-6272/acc14c
    7. Shi, X., Liang, W., Yin, G. et al. Degradation of chlorobenzene by non-thermal plasma coupled with catalyst: influence of catalyst, interaction between plasma and catalyst. Plasma Science and Technology, 2023, 25(5): 055506. DOI:10.1088/2058-6272/acae56
    8. Huang, H., He, L., Wang, Y. et al. Experimental study on toluene removal by a two-stage plasma-biofilter system. Plasma Science and Technology, 2022, 24(12): 124011. DOI:10.1088/2058-6272/aca582
    9. Shi, X., Liang, W., Yin, G. et al. Effect of the factors on the mixture of toluene and chlorobenzene degradation by non-thermal plasma. Journal of Environmental Chemical Engineering, 2022, 10(6): 108927. DOI:10.1016/j.jece.2022.108927
    10. Shi, X., Liang, W., Yin, G. et al. Degradation of chlorobenzene by non-thermal plasma with Mn based catalyst | [低温等离子体协同 Mn 基催化剂降解氯苯研究]. Huagong Xuebao/CIESC Journal, 2022, 73(10): 4472-4483. DOI:10.11949/0438-1157.20220696
    11. Zhu, X., Xiong, H., Liu, J. et al. Plasma-enhanced catalytic oxidation of ethylene oxide over Fe–Mn based ternary catalysts. Journal of the Energy Institute, 2022. DOI:10.1016/j.joei.2022.06.002
    12. Zhu, X., Wu, X., Liu, J. et al. Soot Oxidation over γ-Al2O3-Supported Manganese-Based Binary Catalyst in a Dielectric Barrier Discharge Reactor. Catalysts, 2022, 12(7): 716. DOI:10.3390/catal12070716
    13. Yu, X., Dang, X., Li, S. et al. Abatement of chlorobenzene by plasma catalysis: Parameters optimization through response surface methodology (RSM), degradation mechanism and PCDD/Fs formation. Chemosphere, 2022. DOI:10.1016/j.chemosphere.2022.134274
    14. Gu, J., Shen, X., Liang, X. et al. Research on the removal of H2S using dielectric barrier discharge combined with photocatalysis and the fate of sulfur in the reaction. Chemical Engineering and Processing - Process Intensification, 2022. DOI:10.1016/j.cep.2022.108984
    15. Li, Y., Lv, J., Xu, Q. et al. Study of the Treatment of Organic Waste Gas Containing Benzene by a Low Temperature Plasma-Biological Degradation Method. Atmosphere, 2022, 13(4): 622. DOI:10.3390/atmos13040622
    16. Chang, T., Ma, C., Nikiforov, A. et al. Plasma degradation of trichloroethylene: Process optimization and reaction mechanism analysis. Journal of Physics D: Applied Physics, 2022, 55(12): 125202. DOI:10.1088/1361-6463/ac40bb
    17. Lin, Q., Peng, H., Xie, W. et al. Evaluation catalytic performance of Ag/TiO2 in dielectric barrier discharge plasma. Vacuum, 2022. DOI:10.1016/j.vacuum.2021.110844
    18. Xie, L., Lu, J., Ye, G. et al. Decomposition of gaseous chlorobenzene using a DBD combined CuO/α-Fe2O3 catalysis system. Environmental Technology (United Kingdom), 2022, 43(18): 2743-2754. DOI:10.1080/09593330.2021.1899292
    19. Li, S., Yu, X., Dang, X. et al. Non-thermal plasma coupled with MOx/γ-Al2O3 (M: Fe, Co, Mn, Ce) for chlorobenzene degradation: Analysis of byproducts and the reaction mechanism. Journal of Environmental Chemical Engineering, 2021, 9(6): 106562. DOI:10.1016/j.jece.2021.106562
    20. Jin, X., Wang, G., Lian, L. et al. Chlorobenzene removal using dbd coupled with cuo/γ-al2 o3 catalyst. Applied Sciences (Switzerland), 2021, 11(14): 6433. DOI:10.3390/app11146433
    21. Zhou, W., Ye, Z., Nikiforov, A. et al. The influence of relative humidity on double dielectric barrier discharge plasma for chlorobenzene removal. Journal of Cleaner Production, 2021. DOI:10.1016/j.jclepro.2020.125502
    22. Zhao, Y., Ye, K., Zhuang, Y. et al. Progress of manganese catalysts for non-thermal plasma catalysis on VOCs degradation. Huagong Jinzhan/Chemical Industry and Engineering Progress, 2020, 39(S2): 175-184. DOI:10.16085/j.issn.1000-6613.2020-1111
    23. Wang, R., Ren, J., Wu, J. et al. Characteristics and mechanism of toluene removal by double dielectric barrier discharge combined with an Fe2O3/TiO2/γ-Al2O3catalyst. RSC Advances, 2020, 10(68): 41511-41522. DOI:10.1039/d0ra07938c

    Other cited types(0)

Catalog

    Article views (147) PDF downloads (116) Cited by(23)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return